SWITCHING & FINITE AUTOMATA THEORY

B.E., V Semester, Electronics & Communication Engineering / Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Lecture Hours	·			
Total Number of	40 (8 Hours / Module)	Exam Hours	03	
Hours/Week				
Number of Lecture	03	Exam Marks	80	
Subject Code	15EC552	IA Marks	20	
The per choice based Credit bystem (obco) scheme				

CREDITS - 03

Course Objectives: This course will enable students to:

- 1. Understand the basics of threshold logic, effect of hazards on digital circuits and techniques of fault detection
- 2. Explain finite state model and minimization techniques
- 3. Know structure of sequential machines, and state identification
- 4. Understand the concept of fault detection experiments

Modules			
Module-1	RBT		
	Level		
Threshold Logic: Introductory Concepts: Threshold element, capabilities			
and limitations of threshold logic, Elementary Properties, Synthesis of			
Threshold networks: Unate functions, Identification and realization of			
threshold functions, The map as a tool in synthesizing threshold networks.			
(Sections 7.1, 7.2 of Text)			
Module-2			
Reliable Design and Fault Diagnosis: Hazards, static hazards, Design of			
Hazard-free Switching Circuits, Fault detection in combinational circuits,			
Fault detection in combinational circuits: The faults, The Fault Table,			
Covering the fault table, Fault location experiments: Preset experiments,			
Adaptive experiments, Boolean differences, Fault detection by path			
sensitizing. (Sections 8.1, 8.2, 8.3, 8.4, 8.5 of Text)			
Module-3			
Sequential Machines: Capabilities, Minimization and Transformation			
The Finite state model and definitions, capabilities and limitations of finite			
state machines, State equivalence and machine minimization: k-			
equivalence, The minimization Procedure, Machine equivalence,			
Simplification of incompletely specified machines. (Section 10.1, 10.2, 10.3,			
10.4 of Text)			
Module-4			
Structure of Sequential Machines: Introductory example, State	L1, L2,		
assignment using partitions: closed partitions, The lattice of closed	L3		
partitions, Reduction of output dependency, Input dependence and			
autonomous clocks, Covers and generation of closed partitions by state			
splitting: Covers, The implication graph, An application of state splitting to			
parallel decomposition. (Section 12.1, 12.2, 12.3, 12.4, 12.5, 12.6 of Text)			
Module-5			
State-Identification and Fault Detection Experiments: Experiments,			
Homing experiments, Distinguishing experiments, Machine identification,			

Fault detection experiments, Design of diagnosable machines, Second algorithm for the design of fault detection experiments. (Sections 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7 of Text)

Course outcomes: At the end of the course, students should be able to:

- Explain the concept of threshold logic
- Understand the effect of hazards on digital circuits and fault detection and analysis
- Define the concepts of finite state model
- Analyze the structure of sequential machine
- Explain methods of state identification and fault detection experiments

Question paper pattern:

- The question paper will have ten questions
- · Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module
- The students will have to answer 5 full questions, selecting one full question from each module

Text Book:

Switching and Finite Automata Theory - Zvi Kohavi, McGraw Hill, 2nd edition, 2010 ISBN: 0070993874.

Reference Books:

- 1. Fault Tolerant And Fault Testable Hardware Design-Parag K Lala, Prentice Hall Inc. 1985.
- 2. **Digital Circuits and Logic Design**.-Charles Roth Jr, Larry L. Kinney, Cengage Learning, 2014, ISBN: 978-1-133-62847-7.

H. O. D.

DW.7

Dept. Of Electronics & Communication Alva' - Institute of Engg & Technology Milat, MODDEIDEL-574 225