OPERATING SYSTEM

B.E., V Semester, Electronics & Communication Engineering / Telecommunication Engineering

[As per Choice	Based	Credit System	(CBCS)	schemel

Subject Code	15EC553	IA Marks	20				
Number of Lecture	03	Exam Marks	80				
Hours/Week							
Total Number of	40 (8 Hours / Module)	Exam Hours	03				
Lecture Hours	,						

CREDITS - 03

Course objectives: This course will enable students to:

- Understand the services provided by an operating system.
- Understand how processes are synchronized and scheduled.
- Understand different approaches of memory management and virtual memory management.
- Understand the structure and organization of the file system
- Understand interprocess communication and deadlock situations.

Module-1	RBT				
	Level				
Introduction to Operating Systems					
OS, Goals of an OS, Operation of an OS, Computational Structures,					
Resource allocation techniques, Efficiency, System Performance and User					
Convenience, Classes operating System, Batch processing, Multi					
programming, Time Sharing Systems, Real Time and distributed Operating					
Systems (Topics from Sections 1.2, 1.3, 2.2 to 2.8 of Text).					
Module-2					
Process Management: OS View of Processes, PCB, Fundamental State					
Transitions, Threads, Kernel and User level Threads, Non-preemptive					
scheduling- FCFS and SRN, Preemptive Scheduling- RR and LCN, Long					
term, medium term and short term scheduling in a time sharing system					
(Topics from Sections 3.3, 3.3.1 to 3.3.4, 3.4, 3.4.1, 3.4.2, 4.2, 4.3, 4.4.1)					
of Text).					
Module-3					
Memory Management: Contiguous Memory allocation, Non-Contiguos					
Memory Allocation, Paging, Segmentation, Segmentation with paging,					
Virtual Memory Management, Demand Paging, Paging Hardware, VM					
handler, FIFO, LRU page replacement policies (Topics from Sections 5.5 to					
5.9, 6.1 to 6.3, except Optimal policy and 6.3.1of Text).					
Module-4					
File Systems: File systems and IOCS, File Operations, File Organizations,					
Directory structures, File Protection, Interface between File system and					
IOCS, Allocation of disk space, Implementing file access (Topics from					
Sections 7.1 to 7.8 of Text).					
Module-5					
Message Passing and Deadlocks: Overview of Message Passing,					
Implementing message passing, Mailboxes, Deadlocks, Deadlocks in					
resource allocation, Resource state modelling, Deadlock detection					
algorithm, Deadlock Prevention (Topics from Sections 10.1 to 10.3, 11.1 to					

11.5 of Text).

Course outcomes: After studying this course, students will be able to:

- Explain the goals, structure, operation and types of operating systems.
- Apply scheduling techniques to find performance factors.
- Explain organization of file systems and IOCS.
- Apply suitable techniques for contiguous and non-contiguous memory allocation.
- Describe message passing, deadlock detection and prevention methods.

Question paper pattern:

- The question paper will have ten questions
- · Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module
- The students will have to answer 5 full questions, selecting one full question from each module

Text Book:

Operating Systems - A concept based approach, by Dhamdare, TMH, 2nd edition.

Reference Books:

- 1. Operating systems concepts, Silberschatz and Galvin, John Wiley India Pvt. Ltd, 5th edition,2001.
- 2. Operating system-internals and design system, William Stalling, Pearson Education, 4th ed, 2006.
- 3. Design of operating systems, Tannanbhaum, TMH, 2001.

H.O.D.

D.V.T

Dept. Of Electronics & Communication Alva' Institute of Engg & Technology Mijar, MOCOSIORI - 574 225