Verilog HDL

B.E., V Semester, Electronics & Communication Engineering/ Telecommunication Engineering

As	per Choice Based Credit Sys	stem (CRCS) ash	1		
		TANGE (CDCS) SCHE	emej		
Number of Lecture	04	IA Marks	20		
Hours/Week	04	Exam Marks	80		
Total Number of	50 (10)				
Lecture Hours	50 (10 Hours / Module)	Exam Hours	03		
OPPOVE					
Course objectives: The CREDITS - 04					

Course objectives: This course will enable students to:

- Differentiate between Verilog and VHDL descriptions.
- Learn different Verilog HDL and VHDL constructs.
- Familiarize the different levels of abstraction in Verilog.
- Understand Verilog Tasks and Directives.
- Understand timing and delay Simulation.
- Learn VHDL at design levels of data flow, behavioral and structural for effective modeling of digital circuits.

Module-1			
	RBT		
Overview of Digital Design with Verilog HDL	Level		
Evolution of CAD, emergence of HDI a typical LIDI of			
Hierarchical Modeling Concepts			
Top-down and bottom-up design methodology, differences between modules and module instances, parts of a six differences between			
modules and module instances, parts of a simulation, design block, stimulus block. (Text1)			
Module-2			
Basic Concepts	L1, L2,		
Lexical conventions, data types, system tasks, compiler directives. (Text1)			
Module definition, port declaration, connecting ports, hierarchical name referencing. (Text1)			
Module-3			
Gate-Level Modeling	L1, L2,		
Modeling using basic Verilog gate primitives, description of and/or and buf/not type gates, rise, fall and turn-off delays, min, max, and typical delays. (Text1)			
Dataflow Modeling			
Continuous assignments, delay specification, expressions, operators, operands, operator types. (Text1)			
Module-4			
Behavioral Modeling			
Structured procedures, initial and always, blocking and non-blocking			
procedures, miliai and always, blocking and non-blocking	L3		

statements, delay control, generate statement, event control, conditional statements, Multiway branching, loops, sequential and parallel blocks. (Text1)		
Module-5		
Introduction to VHDL	L1, L2,	
Introduction: Why use VHDL?, Shortcomings, Using VHDL for Design		
Synthesis, Design tool flow, Font conventions.		
Entities and Architectures: Introduction, A simple design, Design		
entities, Identifiers, Data objects, Data types, and Attributes. (Text 2)		

Course Outcomes: At the end of this course, students should be able to

- · Write Verilog programs in gate, dataflow (RTL), behavioral and switch modeling levels of Abstraction.
- Write simple programs in VHDL in different styles.
- Design and verify the functionality of digital circuit/system using test benches.
- Identify the suitable Abstraction level for a particular digital design.
- Write the programs more effectively using Verilog tasks and directives.
- Perform timing and delay Simulation.

Question paper pattern:

- The question paper will have ten questions
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module
- The students will have to answer 5 full questions, selecting one full question from each module

Text Books:

- 1. Samir Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", Pearson Education, Second Edition.
- 2. Kevin Skahill, "VHDL for Programmable Logic", PHI/Pearson education, 2006.

Reference Books:

- 1. Donald E. Thomas, Philip R. Moorby, "The Verilog Hardware Description Language", Springer Science+Business Media, LLC, Fifth edition.
- 2. Michael D. Ciletti, "Advanced Digital Design with the Verilog HDL" Pearson (Prentice Hall), Second edition.
- 3. Padmanabhan, Tripura Sundari, "Design through Verilog HDL", Wiley, 2016 or earlier.

H.O.D.

Dept. Of Electronics & Communication Alva' - Institute of Engly & Technology Mijar, MOODBIDRI - 574 22-