DIGITAL SIGNAL PROCESSING

B.E., V Semester, Electronics & Communication Engineering / Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

	10 por onoice Basea erea	J		
Subject Code	15EC52	IA Marks	20	
Number of Lecture	04	Exam Marks	80	
Hours/Week				
Total Number of	50 (10 Hours / Module)	Exam Hours	03	
Lecture Hours				
CREDITS – 04				

Course objectives: This course will enable students to

- Understand the frequency domain sampling and reconstruction of discrete time signals.
- Study the properties and the development of efficient algorithms for the computation of DFT.
- Realization of FIR and IIR filters in different structural forms.
- Learn the procedures to design of IIR filters from the analog filters using impulse invariance and bilinear transformation.
- Study the different windows used in the design of FIR filters and design appropriate filters based on the specifications.

Modules				
Module-1	RBT Level			
Discrete Fourier Transforms (DFT): Frequency domain sampling and reconstruction of discrete time signals. DFT as a linear transformation, its relationship with other transforms. Properties of DFT, multiplication of two DFTs- the circular convolution.				
Module-2				
Additional DFT properties, use of DFT in linear filtering, overlap-save and overlap-add method. Fast-Fourier-Transform (FFT) algorithms: Direct computation of DFT, need for efficient computation of the DFT (FFT algorithms).	L1, L2, L3			
Module-3				
Radix-2 FFT algorithm for the computation of DFT and IDFT-decimation-in-time and decimation-in-frequency algorithms. Goertzel algorithm, and chirp-z transform.				
Module-4				
Structure for IIR Systems: Direct form, Cascade form, Parallel form structures. IIR filter design: Characteristics of commonly used analog filter – Butterworth and Chebyshev filters, analog to analog frequency transformations. Design of IIR Filters from analog filter using Butterworth filter: Impulse invariance, Bilinear transformation.				
Module-5				
Structure for FIR Systems: Direct form, Linear Phase, Frequency sampling	L1, L2,			

structure, Lattice structure.

FIR filter design: Introduction to FIR filters, design of FIR filters using - Rectangular, Hamming, Hanning and Bartlett windows.

L3

Course Outcomes: After studying this course, students will be able to:

- Determine response of LTI systems using time domain and DFT techniques.
- Compute DFT of real and complex discrete time signals.
- Computation of DFT using FFT algorithms and linear filtering approach.
- Solve problems on digital filter design and realize using digital computations.

Question paper pattern:

- The question paper will have ten questions
- · Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Digital signal processing – Principles Algorithms & Applications, Proakis & Monalakis, Pearson education, 4th Edition, New Delhi, 2007.

Reference Books:

- 1. Discrete Time Signal Processing, Oppenheim & Schaffer, PHI, 2003.
- 2. Digital Signal Processing, S. K. Mitra, Tata Mc-Graw Hill, 3rd Edition, 2010.
- 3. Digital Signal Processing, Lee Tan: Elsevier publications, 2007.

H. O. D.

Dept. Of Electronics & Communication Alva' Institute of Engg & Technology Mijar, MOQDBIDRI - 574 225