LINEAR INTEGRATED CIRCUITS [As per Choice Based Credit System (CBCS) scheme] SEMESTER – IV (EC/TC)								
Subject Code	15EC46	IA Marks	20					
Number of Lecture Hours/Week	04	Exam Marks	80					
Total Number of Lecture Hours	50(10 Hours per Module)	Exam Hours	03					

CREDITS - 04

Course objectives: This course will enable students to:

- Define and describe various parameters of Op-Amp, its characteristics and specifications.
- Discuss the effects of Input and Output voltage ranges upon Op-Amp circuits.
- Sketch and Analyze Op-Amp circuits to determine Input Impedances, output Impedances and other performance parameters.
- Sketch and Explain typical Frequency Response graphs for each of the Filter circuits showing Butterworth and Chebyshev responses where ever appropriate.
- Describe and Sketch the various switching circuits of Op-Amps and analyze its operations.
- Differentiate between various types of DACs and ADCs and evaluate the performance of each with neat circuit diagrams and assuming suitable inputs.

Modules	RBT			
	Level			
Module -1				
Operational Amplifier Fundamentals: Basic Op-amp circuit, Op-Amp parameters – Input and output voltage, CMRR and PSRR, offset voltages and currents, Input and output impedances, Slew rate and Frequency limitations. OP-Amps as DC Amplifiers – Biasing OP-amps, Direct coupled voltage followers, Non-inverting amplifiers, inverting amplifiers, Summing amplifiers, and Difference amplifiers. Interpretation of OP-amp LM741 & TL081 datasheet.(Text1)	L1, L2,L3			
Module -2				
Op-Amps as AC Amplifiers: Capacitor coupled voltage follower, High input impedance – Capacitor coupled voltage follower, Capacitor coupled non inverting amplifiers, High input impedance – Capacitor coupled Non inverting amplifiers, Capacitor coupled inverting amplifiers, setting the upper cut-off frequency, Capacitor coupled difference amplifier. OP-Amp Applications: Voltage sources, current sources and current sinks, current amplifiers, instrumentation amplifier, precision rectifiers.(Text1)	L1, L2,L3			
Module-3				
More Applications: Limiting circuits, Clamping circuits, Peak detectors, Sample and hold circuits, V to I and I to V converters, Differentiating Circuit, Integrator Circuit, Phase shift oscillator, Wien bridge oscillator, Crossing detectors, inverting Schmitt trigger. (Text 1) Log and antilog amplifiers, Multiplier and divider. (Text2)	L1, L2,L3			

ı	71.15	_	4		1	_	-4
ı	TAT	o	u	u	1	e	-4

Active Filters: First order and second order active Low-pass and high pass L1, L2,L3 filters, Bandpass Filter, Bandstop Filter.

(Text 1)

Voltage Regulators: Introduction, Series Op-amp regulator, IC voltage regulators. 723 general purpose regulators. (Text 2)

Module -5

Phase locked loop: Basic Principles, Phase detector/comparator, VCO. DAC and ADC convertor: DAC using R-2R, ADC using Successive approximation.

Other IC Application: 555 timer, Basic timer circuit, 555 timer used as a stable and monostable multivibrator.

(Text 2)

Course Outcomes: After studying this course, students will be able to:

- Explain Op-Amp circuit and parameters including CMRR, PSRR, Input & Output Impedances and Slew Rate.
- Design Op-Amp based Inverting, Non-inverting, Summing & Difference Amplifier, and AC Amplifiers including Voltage Follower.
- Test circuits of Op-Amp based Voltage/ Current Sources & Sinks, Current, Instrumentation and Precision Amplifiers.
- Test circuits of Op-Amp based linear and non-linear circuits comprising of limiting, clamping, Sample & Hold, Differentiator/ Integrator Circuits, Peak Detectors, Oscillators and Multiplier & Divider.
- Design first & second order Low Pass, High Pass, Band Pass, Band Stop Filters and Voltage Regulators using Op-Amps.
- Explain applications of linear ICs in phase detector, VCO, DAC, ADC and Timer.

Question paper pattern:

- The question paper will have ten questions.
- Each full Question consisting of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. "Operational Amplifiers and Linear IC's", David A. Bell, 2nd edition, PHI/Pearson, 2004. ISBN 978-81-203-2359-9.
- "Linear Integrated Circuits", D. Roy Choudhury and Shail B. Jain, 4th edition, Reprint 2006, New Age International ISBN 978-81-224-3098-1.

L1, L2,L3

Reference Books:

- 1. Ramakant A Gayakwad, "Op-Amps and Linear Integrated Circuits", Pearson, 4th Ed, 2015. ISBN 81-7808-501-1.
- 2. B Somanathan Nair, "Linear Integrated Circuits: Analysis, Design & Applications," Wiley India, 1st Edition, 2015.
- **3.** James Cox, "Linear Electronics Circuits and Devices", Cengage Learning, Indian Edition, 2008, ISBN-13: 978-07-668-3018-7.
- 4. Data Sheet: http://www.ti.com/lit/ds/symlink/tl081.pdf.

D-V. H.O.D.

Dept. Of Electronics & Communication
Alva' - Institute of Engg & Technology
Mijar, MOODBIOR: - 574 225