	NETWORK ANALY [As per Choice Based Credit Syste SEMESTER – III (EC	m (CBCS) scheme]	
Subject Code	15EC34	IA Marks	20
Number	04	Exam Marks	80
Total Number of Lecture Hours	50 (10 Hours per Module)	Exam Hours	03
9	CREDITS - 04		

Course objectives: This course enables students to:

- Describe basic network concepts emphasizing source transformation, source shifting, mesh and nodal techniques to solve for resistance/impedance, voltage, current and power.
- Explain network Thevenin's, Millman's, Superposition, Reciprocity, Maximum Power transfer and Norton's Theorems and apply them in solving the problems related to Electrical Circuits.
- Explain the behavior of networks subjected to transient conditions.
- Use applications of Laplace transforms to network problems.
- Describe Series and Parallel Combination of Passive Components as resonating circuits, related parameters and to analyze frequency response.
- Study two port network parameters like Z, Y, T and h and their inter-relationships and applications.

Concepts of super node and super mesh. Module -2 Network Theorems: Superposition, Reciprocity, Millman's theorems, Thevinin's and Norton's theorems, Maximum Power transfer theorem. Module -3 Transient behavior and initial conditions: Behavior of circuit elements under switching condition and their Representation, evaluation of initial and final conditions in RL, RC and RLC circuits for AC and DC excitations. Laplace Transformation & Applications: Solution of networks, step, ramp and impulse responses, waveform Synthesis. Module -4 Resonant Circuits: Series and parallel resonance, frequency- response of L1, L2,		
Basic Concepts: Practical sources, Source transformations, Network reduction using Star – Delta transformation, Loop and node analysis with linearly dependent and independent sources for DC and AC networks, Concepts of super node and super mesh. Module -2 Network Theorems: Superposition, Reciprocity, Millman's theorems, Thevinin's and Norton's theorems, Maximum Power transfer theorem. Module -3 Transient behavior and initial conditions: Behavior of circuit elements under switching condition and their Representation, evaluation of initial and final conditions in RL, RC and RLC circuits for AC and DC excitations. Laplace Transformation & Applications: Solution of networks, step, ramp and impulse responses, waveform Synthesis. Module -4 Resonant Circuits: Series and parallel resonance, frequency- response of L1, L2,	Modules	
reduction using Star – Delta transformation, Loop and node analysis with linearly dependent and independent sources for DC and AC networks, Concepts of super node and super mesh. Module -2 Network Theorems: Superposition, Reciprocity, Millman's theorems, Thevinin's and Norton's theorems, Maximum Power transfer theorem. Module -3 Transient behavior and initial conditions: Behavior of circuit elements under switching condition and their Representation, evaluation of initial and final conditions in RL, RC and RLC circuits for AC and DC excitations. Laplace Transformation & Applications: Solution of networks, step, ramp and impulse responses, waveform Synthesis. Module -4 Resonant Circuits: Series and parallel resonance, frequency- response of L1, L2,	Module -1	
Network Theorems: Superposition, Reciprocity, Millman's theorems, Thevinin's and Norton's theorems, Maximum Power transfer theorem. Module -3 Transient behavior and initial conditions: Behavior of circuit elements under switching condition and their Representation, evaluation of initial and final conditions in RL, RC and RLC circuits for AC and DC excitations. Laplace Transformation & Applications: Solution of networks, step, ramp and impulse responses, waveform Synthesis. Module -4 Resonant Circuits: Series and parallel resonance, frequency- response of L1, L2,	reduction using Star – Delta transformation, Loop and node analysis with linearly dependent and independent sources for DC and AC networks,	L1, L2,L3,L4
Superposition, Reciprocity, Millman's theorems, Thevinin's and Norton's theorems, Maximum Power transfer theorem. Module -3 Transient behavior and initial conditions: Behavior of circuit elements under switching condition and their Representation, evaluation of initial and final conditions in RL, RC and RLC circuits for AC and DC excitations. Laplace Transformation & Applications: Solution of networks, step, ramp and impulse responses, waveform Synthesis. Module -4 Resonant Circuits: Series and parallel resonance, frequency- response of L1, L2,	Module -2	
Transient behavior and initial conditions: Behavior of circuit elements under switching condition and their Representation, evaluation of initial and final conditions in RL, RC and RLC circuits for AC and DC excitations. Laplace Transformation & Applications: Solution of networks, step, ramp and impulse responses, waveform Synthesis. Module -4 Resonant Circuits: Series and parallel resonance, frequency- response of L1, L2,	Superposition, Reciprocity, Millman's theorems, Thevinin's and Norton's	
under switching condition and their Representation, evaluation of initial and final conditions in RL, RC and RLC circuits for AC and DC excitations. Laplace Transformation & Applications: Solution of networks, step, ramp and impulse responses, waveform Synthesis. Module -4 Resonant Circuits: Series and parallel resonance, frequency- response of L1, L2,	Module -3	
Resonant Circuits: Series and parallel resonance, frequency- response of L1, L2,	under switching condition and their Representation, evaluation of initial and final conditions in RL, RC and RLC circuits for AC and DC excitations. Laplace Transformation & Applications: Solution of networks, step,	
series and Parallel circuits, Q–Factor, Bandwidth.	Resonant Circuits: Series and parallel resonance, frequency- response of series and Parallel circuits, Q-Factor, Bandwidth.	

Two port network parameters: Definition of Z, Y, h and Transmission parameters, modeling with these parameters, relationship between parameters sets.

L1, L2, L3,L4

Course Outcomes: After studying this course, students will be able to:

- Determine currents and voltages using source transformation/ source shifting/ mesh/ nodal analysis and reduce given network using star-delta transformation/ source transformation/ source shifting.
- Solve network problems by applying Superposition/ Reciprocity/ Thevenin's/ Norton's/ Maximum Power Transfer/ Millman's Network Theorems and electrical laws to reduce circuit complexities and to arrive at feasible solutions.
- Calculate current and voltages for the given circuit under transient conditions.
- Apply Laplace transform to solve the given network.
- Evaluate for RLC elements/ frequency response related parameters like resonant frequency, quality factor, half power frequencies, voltage across inductor and capacitor, current through the RLC elements, in resonant circuits
- Solve the given network using specified two port network parameter like Z or Y or T or h.

Question paper pattern:

- The question paper will have ten questions.
- · Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. M.E. Van Valkenberg (2000), "Network analysis", Prentice Hall of India, 3rd edition, 2000, ISBN: 9780136110958.
- 2. Roy Choudhury, "Networks and systems", 2nd edition, New Age International Publications, 2006, ISBN: 9788122427677.

Reference Books:

- 1. Hayt, Kemmerly and Durbin "Engineering Circuit Analysis", TMH 7th Edition, 2010.
- 2. J. David Irwin /R. Mark Nelms, "Basic Engineering Circuit Analysis", John Wiley, 8thed, 2006.
- **3.** Charles K Alexander and Mathew N O Sadiku, "Fundamentals of Electric Circuits", Tata McGraw-Hill, 3rd Ed, 2009.

H. O. D.

Dept. Of Electronics & Communication Alva' Institute of Engg. & Technology Mijar, MOODBIDRI - 574 22h