B.E., III Semester, Electronics & Communication Engineering /Telecommunication Engineering

ENGINEERING MATHEMATICS-III				
B.E., III Semester, Common to all Branches				
[As per Choice Based Credit System (CBCS) scheme]				
Subject Code	15MAT31	IA Marks	20	
Number of Lecture	04	Exam marks	80	
Hours/Week				
Total Number of	50 (10 Hours per Module)			
Lecture Hours				
Credits – 04				

Course Objectives: This course will enable students to:

- Introduce most commonly used analytical and numerical methods in the different engineering fields.
- Learn Fourier series, Fourier transforms and Z-transforms, statistical methods, numerical methods.
- Solve algebraic and transcendental equations, vector integration and calculus of variations.

Modules		
	RBT Level	
Module-1		
Fourier Series: Periodic functions, Dirichlet's condition, Fourier Series of	L1, L2,	
periodic functions with period 2π and with arbitrary period $2c$. Fourier		
series of even and odd functions. Half range Fourier Series, practical		
harmonic analysis-Illustrative examples from engineering field.		
Module-2		
Fourier Transforms: Infinite Fourier transforms, Fourier sine and cosine	L2, L3,	
transforms. Inverse Fourier transform.		
Z-transform: Difference equations, basic definition, z-transform-definition,		
Standard z-transforms, Damping rule, Shifting rule, Initial value and final		
value theorems (without proof) and problems, Inverse z-transform.		
Applications of z-transforms to solve difference equations.		
Module-3		
Statistical Methods: Review of measures of central tendency and		
dispersion. Correlation-Karl Pearson's coefficient of correlation-problems.		
Regression analysis- lines of regression (without proof) –Problems		
Curve Fitting: Curve fitting by the method of least squares- fitting of the		
curves of the form, $y = ax + b$, $y = ax^2 + bx + c$ and $y = ae^{bx}$.		
Numerical Methods: Numerical solution of algebraic and transcendental		
equations by Regula- Falsi Method and Newton-Raphson method.		
Module-4		
Finite differences: Forward and backward differences, Newton's forward		
and backward interpolation formulae. Divided differences- Newton's		
divided difference formula. Lagrange's interpolation formula and inverse		
interpolation formula (all formulae without proof)-Problems.		
Numerical integration: Simpson's (1/3)th and (3/8)th rules, Weddle's rule		
(without proof)–Problems.		

Vector integration: Line integrals-definition and problems, surface and volume integrals-definition, Green's theorem in a plane, Stokes and Gauss-divergence theorem(without proof) and problems. Calculus of Variations: Variation of function and Functional, variational problems. Euler's equation, Geodesics, hanging chain, Problems. Course outcomes: On completion of this course, students are able to: Know the use of periodic signals and Fourier series to analyze circuits and system communications. Explain the general linear system theory for continuous-time signals and digital signal processing using the Fourier Transform and z-transform. Employ appropriate numerical methods to solve algebraic and transcendental equations. Apply Green's Theorem, Divergence Theorem and Stokes' theorem in various applications in the field of electro-magnetic and gravitational fields and fluid flow problems. Determine the extremals of functionals and solve the simple problems of the calculus of variations.	Module-5	
 Know the use of periodic signals and Fourier series to analyze circuits and system communications. Explain the general linear system theory for continuous-time signals and digital signal processing using the Fourier Transform and z-transform. Employ appropriate numerical methods to solve algebraic and transcendental equations. Apply Green's Theorem, Divergence Theorem and Stokes' theorem in various applications in the field of electro-magnetic and gravitational fields and fluid flow problems. Determine the extremals of functionals and solve the simple problems of 	Gauss-divergence theorem(without proof) and problems. Calculus of Variations: Variation of function and Functional, variational	
Question names nattorns	 Know the use of periodic signals and Fourier series to analyze circuits and system communications. Explain the general linear system theory for continuous-time signals and digital signal processing using the Fourier Transform and z-transform. Employ appropriate numerical methods to solve algebraic and transcendental equations. Apply Green's Theorem, Divergence Theorem and Stokes' theorem in various applications in the field of electro-magnetic and gravitational fields and fluid flow problems. Determine the extremals of functionals and solve the simple problems of the calculus of variations. 	

Question paper pattern:

- The question paper will have ten questions.
- Each full Question consisting of 16 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, 43rd Ed., 2015.
- 2. E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10th Ed., 2015.

Reference Books:

- 1. N.P.Bali and Manish Goyal: A Text Book of Engineering Mathematics, Laxmi Publishers, 7th Ed., 2010.
- 2. B.V.Ramana: "Higher Engineering Mathematics" Tata McGraw-Hill, 2006.
- 3. H. K. Dass and Er. Rajnish Verma: "Higher Engineering Mathematics", S. Chand publishing, 1st edition, 2011.

Web Link and Video Lectures:

- 1. http://nptel.ac.in/courses.php?disciplineID=111
- 2. http://www.khanacademy.org/
- 3. http://www.class-central.com/subject/math

DV. June

H.O.D.

Dept. Of Electronics & Communication
Alva' - Institute of Engg. & Technology
Milat, MODOBIDR: - 574 220