ENGINEERING ELECTROMAGNETICS				
[As per Choice Based Credit System (CBCS) scheme]				
SEMESTER - III (EC/TC)				
Subject Code	15EC36	IA Marks	20	
Number of Lecture Hours/Week	04	Exam Marks	80	
Total Number of Lecture Hours	50 (10 Hours per Module)	Exam Hours	03	
CREDITS – 04				

Course objectives: This course will enable students to:

- Study the different coordinate systems, Physical signifiance of Divergence, Curl and Gradient.
- Understand the applications of Coulomb's law and Gauss law to different charge distributions and the applications of Laplace's and Poisson's Equations to solve real time problems on capacitance of different charge distributions.
- Understand the physical significance of Biot-Savart's, Amperes's Law and Stokes' theorem for different current distributions.
- Infer the effects of magnetic forces, materials and inductance.
- Know the physical interpretation of Maxwell' equations and applications for Plane waves for their behaviour in different media
- Acquire knowledge of Poynting theorem and its application of power flow.

Modules	RBT Level
Module - 1	
Coulomb's Law, Electric Field Intensity and Flux density	
Experimental law of Coulomb, Electric field intensity, Field due to	L1, L2, L3
continuous volume charge distribution, Field of a line charge, Electric	1 ' '
flux density.	
Module -2	
Gauss's law and Divergence	L1, L2, L3
Gauss' law, Divergence. Maxwell's First equation (Electrostatics),	
Vector Operator ▼ and divergence theorem.	
Energy, Potential and Conductors	
Energy expended in moving a point charge in an electric field, The	
line integral, Definition of potential difference and potential, The	
potential field of point charge, Current and Current density,	
Continuity of current.	
Module -3	50 g/
Poisson's and Laplace's Equations	L1, L2, L3
Derivation of Poisson's and Laplace's Equations, Uniqueness	
theorem, Examples of the solution of Laplace's equation.	
Steady Magnetic Field	
Biot-Savart Law, Ampere's circuital law, Curl, Stokes' theorem,	
Magnetic flux and magnetic flux density, Scalar and Vector Magnetic	to a
Potentials.	
Module -4	

Magnetic Forces	L1, L2, L3
Force on a moving charge, differential current elements, Force	
between differential current elements.	
Magnetic Materials	
Magnetisation and permeability, Magnetic boundary conditions,	
Magnetic circuit, Potential Energy and forces on magnetic materials.	
Module -5	
Time-varying fields and Maxwell's equations	L1, L2, L3
Farday's law, displacement current, Maxwell's equations in point	
Farday's law, displacement current, Maxwell's equations in point form, Maxwell's equations in integral form.	
form, Maxwell's equations in integral form.	
form, Maxwell's equations in integral form. Uniform Plane Wave	
form, Maxwell's equations in integral form.	

Course Outcomes: After studying this course, students will be able to:

- Evaluate problems on electric field due to point, linear, volume charges by applying conventional methods or by Gauss law.
- Determine potential and energy with respect to point charge and capacitance using Laplace equation.
- Calculate magnetic field, force, and potential energy with respect to magnetic materials.
- Apply Maxwell's equation for time varying fields, EM waves in free space and
- Evaluate power associated with EM waves using Poynting theorem.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consisting of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

W.H. Hayt and J.A. Buck, "Engineering Electromagnetics", 7th Edition, Tata McGraw-Hill, 2009, ISBN-978-0-07-061223-5.

Reference Books:

- 1. John Krauss and Daniel A Fleisch, "Electromagnetics with applications", McGraw-
- 2. N. Narayana Rao, "Fundamentals of Electromagnetics for Engineering", Pearson.

P.V. 7

Dept. Of Electronics & Communication What i lustitute of Kund & Lechnology

Mijar, MOODBIDRI - 574 225

21