DIGITAL ELECTRONICS LABORATORY

[As per Choice Based Credit System (CBCS) scheme]

SEMESTER - III (EC/TC)

Laboratory Code	15ECL38	IA Marks	20
Number of Lecture	01Hr Tutorial (Instructions)	Exam	80
Hours/Week	+ 02 Hours Laboratory	Mark	
RBT Level	L1, L2, L3	Exam	03
		Hour	

CREDITS - 02

Course objectives: This laboratory course enables students to get practical experience in design, realisation and verification of

- Demorgan's Theorem, SOP, POS forms
- Full/Parallel Adders, Subtractors and Magnitude Comparator
- Multiplexer using logic gates
- Demultiplexers and Decoders
- Flip-Flops, Shift registers and Counters

NOTE:

- 1. Use discrete components to test and verify the logic gates. The IC umbers given are suggestive. Any equivalent IC can be used.
- 2. For experiment No. 11 and 12 any open source or licensed simulation tool may be used.

Laboratory Experiments:

- 1. Verify
 - (a) Demorgan's Theorem for 2 variables.
 - (b) The sum-of product and product-of-sum expressions using universal gates.
- 2. Design and implement
 - (a) Full Adder using basic logic gates.
 - (b) Full subtractor using basic logic gates.
- 3. Design and implement 4-bit Parallel Adder/ subtractor using IC 7483.
- 4. Design and Implementation of 4-bit Magnitude Comparator using IC 7485.
- 5. Realize
 - (a) 4:1 Multiplexer using gates.
 - (b) 3-variable function using IC 74151(8:1MUX).
- 6. Realize 1:8 Demux and 3:8 Decoder using IC74138.
- 7. Realize the following flip-flops using NAND Gates.
 - (a) Clocked SR Flip-Flop (b) JK Flip-Flop.
- 8. Realize the following shift registers using IC7474 (a) SISO (b) SIPO (c) PISO (d) PIPO.
- 9. Realize the Ring Counter and Johnson Counter using IC7476.
- 10. Realize the Mod-N Counter using IC7490.

- 11. Simulate Full- Adder using simulation tool.
- 12. Simulate Mod-8 Synchronous UP/DOWN Counter using simulation tool.

Course outcomes: On the completion of this laboratory course, the students will be able to:

- Demonstrate the truth table of various expressions and combinational circuits using logic gates.
- Design and test various combinational circuits such as adders, subtractors, comparators, multiplexers and demultiplexers.
- Construct and test flips-flops, counters and shift registers.
- Simulate full adder and up/down counters.

Conduct of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick one experiment from the lot.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

H.O.D.

Dept. Of Electronics & Communication Alva' Institute of Engg & Technology Mijar, MOODBIDRI - 574 225