| IAs non Chart | MACHINE LEA | RNING | | |--|--|--|---| | Per Choic | e Based Credit Sy | stem (CBCS) schen | nel . | | (Effective | arom the academi | c vear 2017 - 2010\ | | | Subject Code | SEMESTER - | - VII | | | Number of Lecture Hours/Week | 17CS73 | IA Marks | 40 | | Total Number of Lecture Hours | 03 | Exam Marks | 60 | | or Secture Hours | 50 | Exam Hours | 03 | | Module – 1 | CREDITS - | 04 | 03 | | | | | Teachir | | Introduction: Well posed learning | ng problems D | | Hours | | Introduction: Well posed learning Perspective and Issues in Machine L. | earning | signing a Learning | system, 10 Hour | | Concept Learning: Consent t | | | | | algorithm, Version space, Candidate Text Book1, Sections: 1.1 – 1.3, 2.1 | Elimination algorit | t learning as search | n, Find-S | | Text Book1, Sections: 1.1 - 1 3 2 1 | -2.5, 2.7 | inm, Inductive Bias. | | | widdie – Z | | | | | Decision Tree Learning: Decision decision tree learning, Basic decision | tree representation | n A | | | decision tree learning, Basic decision in decision tree learning, Inductive b | tree learning algor | ithm hymothesis | lems for 10 Hours | | in decision tree learning, Inductive bare learning. | oias in decision tre | e learning James : | ce search | | Cext Rook! Sant | | o learning, issues in | decision | | Text Book1, Sections: 3.1-3.7 Module – 3 | | | | | rtificial N | | | | | Appropriate problems Page 1 | troduction, Neura | 1 Notes | | | | | 1 Network represe | entation 00 mm | | ext book 1. Sections: 4.1 | ackpropagation alg | l Network represe | entation, 08 Hours | | ext book 1, Sections: 4.1 - 46 | ackpropagation alg | orithm. | entation, 08 Hours | | ext book 1, Sections: 4.1 – 4.6 Iodule – 4 ayesian Learning: Introduction X | - Propugation ang | oritim. | | | Yearning: Introduction, I arning. MI. and I S. arrent. | Bayes theorem, B | ayes theorem and | | | Yearning: Introduction, I arning. MI. and I S. arrent. | Bayes theorem, B | ayes theorem and | | | Introduction, Farming arning, ML and LS error hypothesinciple, Naive Bayes classifier. Bayes | Bayes theorem, B | ayes theorem and | | | ext book 1, Sections: 4.1 – 4.6 Iodule – 4 ayesian Learning: Introduction, I arning, ML and LS error hypotherinciple, Naive Bayes classifier, Bayes ext book 1, Sections: 6.1 – 6.6, 6.9, 6.00 dule – 5 | Bayes theorem, B esis, ML for presion belief network 6.11, 6.12 | ayes theorem and dicting probabilities, s., EM algorithm | concept 10 Hours | | And the sections: 4.1 – 4.6 Module – 4 And LS error hypothesis: Matientics And LS error hypothesis: Matientics Matientics Matientics Matientics Matientics Matientics Matientics | Bayes theorem, B esis, ML for presian belief network 5.11, 6.12 | ayes theorem and odicting probabilities, s, EM algorithm | concept 10 Hours | | A sections: 4.1 – 4.6 Iodule – 4 Ayesian Learning: Introduction, I arning, ML and LS error hypothesis inciple, Naive Bayes classifier, Bayes ext book 1, Sections: 6.1 – 6.6, 6.9, 6 odule – 5 Valuating Hypothesis: Motivation, mpling theorem. General approach 6. | Bayes theorem, B esis, ML for presian belief network 6.11, 6.12 | ayes theorem and odicting probabilities, s, EM algorithm | concept 10 Hours | | fodule – 4 ayesian Learning: Introduction, Hearning, ML and LS error hypothesis: Motivation, Module – 5 yaluating Hypothesis: Motivation, mpling theorem, General approach for of two hypothesis: Comparison. | Bayes theorem, Besis, ML for presian belief network 6.11, 6.12 Estimating hypotor deriving confider | ayes theorem and odicting probabilities, is, EM algorithm Thesis accuracy, Basince intervals, Difference | concept MDL 10 Hours sics of 12 Hours | | A syesian Learning: Introduction, Framing, ML and LS error hypothesis: Motivation, Sext book 1, Sections: 6.1 – 6.6, 6.9, 6.0 dule – 5 Valuating Hypothesis: Motivation, mpling theorem, General approach for of two hypothesis, Comparing learning: Introductions | Bayes theorem, B esis, ML for pressian belief network 6.11, 6.12 Estimating hypotor deriving confiderning algorithms. | ayes theorem and odicting probabilities, is, EM algorithm thesis accuracy, Basince intervals, Different | concept MDL 10 Hours sics of 12 Hours | | And the sections: 4.1 – 4.6 And the section of the section of two hypothesis, Comparing learning learning theorem, General approach for of two hypothesis, Comparing learning theorem, radial basis for extending theorem. | Bayes theorem, Besis, ML for presian belief network 6.11, 6.12 Estimating hypother deriving confidering algorithms. | ayes theorem and odicting probabilities, is, EM algorithm Thesis accuracy, Basince intervals, Differentials, accuracy, acidenses, acidenses | concept MDL 10 Hours sics of 12 Hours | | Assertions: 4.1 – 4.6 Indule – 4 Ayesian Learning: Introduction, Internation, Introduction, Internation, Introduction, Internation, I | Bayes theorem, Besis, ML for presion belief network 6.11, 6.12 Estimating hypotor deriving confiderning algorithms. etion, k-nearest mon, cased-based rea | ayes theorem and odicting probabilities, is, EM algorithm Thesis accuracy, Basince intervals, Differentials, accuracy, acidenses, acidenses | concept MDL 10 Hours sics of 12 Hours | | Introduction, Harring: Introduction, Harring, ML and LS error hypothesis: Motivation, Module – 5 Valuating Hypothesis: Motivation, appling theorem, General approach for of two hypothesis, Comparing learning: Introduction, applied regression, radial basis function inforcement Learning: Introduction at book 1, Sections: 5.1-5.6, 2.1.0.5 | Bayes theorem, Besis, ML for presian belief network 6.11, 6.12 Estimating hypotor deriving confidering algorithms. Estion, k-nearest mon, cased-based rear, Learning Task, Q | ayes theorem and odicting probabilities, is, EM algorithm Thesis accuracy, Base accuracy, Different eighbor learning, Isoning, Learning | concept MDL 10 Hours sics of 12 Hours | | Introduction, Farming: Introduction, Farming, ML and LS error hypothesis: Motivation, Ext book 1, Sections: 6.1 – 6.6, 6.9, 6.0 dule – 5 Valuating Hypothesis: Motivation, Ext book 1, Sections: General approach for of two hypothesis, Comparing learning theorem, General approach for of two hypothesis, Comparing learning: Introduction inforcement Learning: Introduction at book 1, Sections: 5.1-5.6, 8.1-8.5, surse Outcomes: After studying this contracts of the stu | Bayes theorem, Besis, ML for pressian belief network 6.11, 6.12 Estimating hypotor deriving confiderning algorithms. Estion, k-nearest mon, cased-based read, Learning Task, Q., 13.1-13.3 | ayes theorem and of dicting probabilities, is, EM algorithm thesis accuracy, Basince intervals, Differentially beighbor learning, is soning, Learning | sics of ence in locally | | Introduction, Farming: Introduction, Farming, ML and LS error hypothesis: Motivation, Ext book 1, Sections: 6.1 – 6.6, 6.9, 6.0 dule – 5 Valuating Hypothesis: Motivation, Ext book 1, Sections: General approach for of two hypothesis, Comparing learning theorem, General approach for of two hypothesis, Comparing learning: Introduction inforcement Learning: Introduction at book 1, Sections: 5.1-5.6, 8.1-8.5, surse Outcomes: After studying this contracts of the stu | Bayes theorem, Besis, ML for pressian belief network 6.11, 6.12 Estimating hypotor deriving confiderning algorithms. Estion, k-nearest mon, cased-based read, Learning Task, Q., 13.1-13.3 | ayes theorem and of dicting probabilities, is, EM algorithm thesis accuracy, Basince intervals, Differentially beighbor learning, is soning, Learning | sics of ence in locally | | Assertions: 4.1 – 4.6 Indule – 4 Ayesian Learning: Introduction, It arning, ML and LS error hypothesis inciple, Naive Bayes classifier, Bayes ext book 1, Sections: 6.1 – 6.6, 6.9, 6 odule – 5 Valuating Hypothesis: Motivation, impling theorem, General approach for of two hypothesis, Comparing learning introduction inforcement Learning: Introduction inforcement Learning: Introduction inforcement Learning: Introduction inforcement Learning: Stance Sections: 5.1-5.6, 8.1-8.5, arrse Outcomes: After studying this control of the problems for machine or reinforcement learning. | Bayes theorem, Besis, ML for pressian belief network 6.11, 6.12 Estimating hypotor deriving confiderning algorithms. Estion, k-nearest mon, cased-based read, Learning Task, Q., 13.1-13.3 Ecourse, students will learning. And selections and selections will be a selection of the | ayes theorem and of dicting probabilities, is, EM algorithm Thesis accuracy, Basince intervals, Different eighbor learning, soning, Learning Il be able to ct the either supervise. | sics of locally locally | | Introduction, Harring: Introduction, Harring, ML and LS error hypothesis ext book 1, Sections: 6.1 – 6.6, 6.9, 6 ext book 1, Sections: 6.1 – 6.6, 6.9, 6 ext book 1, Sections: Motivation, appling theorem, General approach for of two hypothesis, Comparing learning: Introduction ext book 1, Sections: 5.1-5.6, 8.1-8.5, arrse Outcomes: After studying this concerning or reinforcement learning. • Recall the problems for machine or reinforcement learning. | Bayes theorem, Besis, ML for pressian belief network 6.11, 6.12 Estimating hypotor deriving confidering algorithms. Estion, k-nearest mon, cased-based read, Learning Task, Q. 13.1-13.3 Course, students will learning. And selection and selection is a selection. | ayes theorem and of dicting probabilities, is, EM algorithm Thesis accuracy, Base | concept MDL 10 Hours Sics of ence in locally sed, unsupersvised | | Introduction, Harring: Introduction, Harring, ML and LS error hypothesis ext book 1, Sections: 6.1 – 6.6, 6.9, 6 ext book 1, Sections: 6.1 – 6.6, 6.9, 6 ext book 1, Sections: Motivation, appling theorem, General approach for of two hypothesis, Comparing learning: Introduction ext book 1, Sections: 5.1-5.6, 8.1-8.5, arrse Outcomes: After studying this concerning or reinforcement learning. • Recall the problems for machine or reinforcement learning. | Bayes theorem, Besis, ML for pressian belief network 6.11, 6.12 Estimating hypotor deriving confidering algorithms. Estion, k-nearest mon, cased-based read, Learning Task, Q. 13.1-13.3 Course, students will learning. And selection and selection is a selection. | ayes theorem and of dicting probabilities, is, EM algorithm Thesis accuracy, Base | sics of ence in locally sed, unsupersvised | | Association in the state of two hypothesis: Association inforcement Learning: Introduction, and the state of two hypothesis: Motivation, and the state of two hypothesis: Motivation, and the state of two hypothesis; Comparing learning theorem, General approach for of two hypothesis, Comparing learning inforcement Learning: Introduction inforcement Learning: Associated or reinforcement learning. • Recall the problems for machine or reinforcement learning. • Understand theory of probability Illustrate concept learning, ANN, estion paper pattern: | Bayes theorem, Besis, ML for pressian belief network 6.11, 6.12 Estimating hypotor deriving confidering algorithms. Etion, k-nearest mon, cased-based read, Learning Task, Q. 13.1-13.3 Ecourse, students will learning. And selection and statistics related Bayes classifier, k | ayes theorem and of dicting probabilities, is, EM algorithm Thesis accuracy, Base | sics of ence in locally sed, unsupersvised | | Introduction, Harring: Introduction, Harring, ML and LS error hypothesis ext book 1, Sections: 6.1 – 6.6, 6.9, 6 ext book 1, Sections: 6.1 – 6.6, 6.9, 6 ext book 1, Sections: Motivation, appling theorem, General approach for of two hypothesis, Comparing learning: Introduction ext book 1, Sections: 5.1-5.6, 8.1-8.5, arrse Outcomes: After studying this concerning or reinforcement learning. • Recall the problems for machine or reinforcement learning. | Bayes theorem, Besis, ML for pressian belief network 6.11, 6.12 Estimating hypother deriving confidering algorithms. Setion, k-nearest mon, cased-based read, Learning Task, Q. 13.1-13.3 Course, students will learning. And select and statistics related Bayes classifier, k | ayes theorem and of dicting probabilities, is, EM algorithm Thesis accuracy, Base | sics of ence in locally sed, unsupersvised | Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module. ## **Text Books:** 1. Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. ## Reference Books: 1. Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. Ethem Alpaydın, Introduction to machine learning, second edition, MIT press. Dept. Of Computer Science & Engineering Alva's Institute of Engg. & Tach............. Mijar, MOODSIDRI - 574 225