ADVANCED	COMPUTER				
[As per Choice]	Based Credit S	ARCHITECTURES ystem (CBCS) scheme			
(Effective from	om the academ	ystem (CBCS) scheme ic year 2017 - 2018)	l		
Subject Code	SEMESTER	– VII			
	17CS72	IA Marks			
Number of Lecture Hours/Week	4			40	
Total Number of Lecture Hours	50	Exam Marks		60	
Mala	CREDITS -	Exam Hours	03		
Module – 1		04			
Theory of P. W.	9			Teaching	
Multiprocessing Parallel ism: Parallel Co	mputer Model	c The Current		Hours	
Theory of Parallelism: Parallel Co Multiprocessors and Multicomputer and VLSI Models, Program and Net Program, Partitioning	,Multivector as	od SIMD C	uting,	10 Hours	
				11	
Interconnect Architectures, Principl Metrics and Measures, Parallel Proc	es of Scalable	Performance D. S.	rstem		
Metrics and Measures, Parallel Proc Laws, Scalability Analysis and Appro	essing Applica	tions Speedus D. C	ance		
Laws, Scalability Analysis and Appro Module – 2	aches.	aons, speedup Perform	ance		
Hardware Technologies P					
Hardware Technologies: Processors at Technology, Superscalar and Vector I	nd Memory Hie	erarchy Advanced Des			
Technology, Superscalar and Vector I Virtual Memory Technology.	Processors, Mer	nory Hierarchy Technol	ssor	10 Hours	
vivuule – 3				200	
Bus, Cache and Shored M.					
Shared Memory Organization, Bu	is Systems, Ca	che Memory Organizati	ion - I	10.77	
I IDEMIING and Supercools To 1		Total Consistency Man	J_1	0 Hours	
Pipeline Processors Instruction Di-	es Linear Pipe	eline Processors Nonlin	1015	1	
Ορίο 6.4).	line Design ,A	rithmetic Pipeline Des	ion		
710dule – 4			-Su		
arallel and Scalable Architectures	. 1411				
arallel and Scalable Architectures Multiprocessor System Interconnects, Jechanisms	Multiprocess	ors and Multicomput	ers 1	O TTo	
				o nours	
lechanisms Multivector and on the	mandeom	Puters Message Poss:			
Iultivector Multiprocessors C	paters , ve	Of Processing Princip	1	1	
ganizations (Unto 84) Scalable	1.00001 110	cessing SIMD Comput	ter	1	
tency-Hiding Techniques D.		Datailow Architecture	a		
ulticomputers, Scalable and Multithre	oded Application	ltithreading, Fine-Gra	in	1	
chitectures.	aded Architecti	res, Dataflow and Hybr	id		
Daule – 5			- 1	1 3	
ftware for parallel programming: Para trallel Programming Models, Parallel	-11-1 3 6 1 1				
rallel Programming Models Parallel	allel Models, L	anguages, and Compile	rs 10	Hours	
Idiysis of Data Amore D	Barbes all	CUMpilers Dependent		110012	
ILCIIIONIZATION and Marie	C ~ Cretopi	ucul and Environment	_ 1		
allelism Instruction r	TIBUUC	uuli and Nyctom I	. 1		
old Design Issues Death	, computer	Alchitecture Contont	_		
All Dilet-detected Instruction	- , intouct (1 a I Vnical Process			
IICI, Kegister Danami	, opera	uu rorwarding Doord	_ 1		
ffer, Register Renaming ,Tomasunitations in Exploiting Instruction rallelism.	Level D	n ,Branch Prediction	,		
allelism.	- Tala	lelism ,Thread Level	1		
urse outcomes: The students should be	oblete			- 1	

Course outcomes: The students should be able to:

- Understand the concepts of parallel computing and hardware technologies
- Illustrate and contrast the parallel architectures
- Recall parallel programming concepts

Question paper pattern

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each

Text Books:

1. Kai Hwang and Naresh Jotwani, Advanced Computer Architecture (SIE): Parallelism, Scalability, Programmability, McGraw Hill Education 3/e. 2015

Reference Books:

1. John L. Hennessy and David A. Patterson, Computer Architecture: A quantitative approach, 5th edition, Morgan Kaufmann Elseveir, 2013

Dept. Of Computer Science & Engineering Alva's Institute of Engy. & Technology Mijar, MOODBIDRI - 574 225