SYSTEM SOFTWARE AND COMPILER DESIGN
[As per Choice Based Credit System (CBCS) scheme]
(Effective from the academic year 2017 - 2018)
CENTREMED VI

SEMESTER	– VI	
-----------------	------	--

	SENTESTER		1 10
Subject Code	17CS63	IA Marks	40
Number of Lecture Hours/Week	4	Exam Marks	60
Total Number of Lecture Hours	50	Exam Hours	03
Total Number of Lecture Hours	CREDITS - 04		
	CREDITS 01		on Line

Total Number of Lecture Hours	30	2,1,1,1,1				
CREDITS - 04						
			Teaching			
Module – 1			Hours			
		a ara 1 growe	10 Hours			
Introduction to System Software, Machine Architecture of SIC and SIC/XE.						
Assemblers: Basic assembler functions, machine dependent assembler features,						
Assemblers: Danie assembler	features assem	bler design options.				
machine independent assembler reactives, described						
Macroprocessors: Basicmacro processor functions,						
Text book 1: Chapter 1: 1.1,1.2,1.3.1,1.3.2, Chapter2 : 2.1-2.4,Chapter4:						
4.1.1,4.1.2						
Module - 2						
Loaders and Linkers: Basic Load	las Eunations Mac	hine Dependent Loader	10 Hours			
Loaders and Linkers: Basic Load	jer runctions, iviac	I Design Options	46.7			
Features, Machine Independent L	oader Features, L	oader Design Options,				
Implementation Examples.			97			
Text book 1 : Chapter 3 ,3.1 -3.5						
Module - 3			T			
Introduction: Language Processors,	The structure of a	compiler, The evaluation	10 Hours			

of programming languages, The science of building compiler, Applications of compiler technology, Programming language basics Lexical Analysis: The role of lexical analyzer, Input buffering, Specifications of

token, recognition of tokens, lexical analyzer generator, Finite automate.

Text book 2: Chapter 1 1.1-1.6 Chapter 3

Module - 4 Syntax Analysis: Introduction, Role Of Parsers, Context Free Grammars, Writing 10 Hours a grammar, Top Down Parsers, Bottom-Up Parsers, Operator-Precedence Parsing Text book 2: Chapter 4 4.1 4.2 4.3 4.4 4.5 4.6 Text book 1: 5.1.3

Module - 5

Syntax Directed Translation, Intermediate code generation, Code generation

10 Hours

Text book 2: Chapter 5.1, 5.2, 5.3, 6.1, 6.2, 8.1, 8.2

Course outcomes: The students should be able to:

- Illustrate system software such as assemblers, loaders, linkers and macroprocessors
- Design and develop lexical analyzers, parsers and code generators
- Discuss about lex and yacc tools for implementing different concepts of system software

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. System Software by Leland. L. Beck, D Manjula, 3rd edition, 2012

2. Compilers-Principles, Techniques and Tools by Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman. Pearson, 2nd edition, 2007

Reference Books:

- 1. Systems programming Srimanta Pal, Oxford university press, 2016
- 2. System programming and Compiler Design, K C Louden, Cengage Learning
- 3. System software and operating system by D. M. Dhamdhere TMG
- 4. Compiler Design, K Muneeswaran, Oxford University Press 2013.

Dept. Of Computer Science & Engineering Alva's Institute of Eager & Technology

Mijar, MOODBIDRI - 574 225