MICROPROCESSOR AND MICROCONTROLLER LABORATORY

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2017 -2018)

SEMESTER - IV

Subject Code	17CSL48	IA Marks	10
Number of Lecture Hours/Week	01 I + 02 P	Exam Marks	60
Total Number of Lecture Hours	40	Exam Hours	03
	CREDITS -		03

Description

Demonstration and Explanation hardware components and Faculty in-charge should explain 8086 architecture, pin diagram in one slot. The second slot, the Faculty in-charge should explain instruction set types/category etc. Students have to prepare a write-up on the same and include it in the Lab record and to be evaluated.

Laboratory Session-1: Write-up on Microprocessors, 8086 Functional block diagram, Pin diagram and description. The same information is also taught in theory class; this helps the students to understand better.

Laboratory Session-2: Write-up on Instruction group, Timing diagrams, etc. The same information is also taught in theory class; this helps the students to understand better.

Note: These TWO Laboratory sessions are used to fill the gap between theory classes and practical sessions. Both sessions are evaluated as lab experiments for 20 marks.

Experiments

- Develop and execute the following programs using 8086 Assembly Language. Any suitable assembler like MASM/TASM/8086 kit or any equivalent software may be used.
- Program should have suitable comments.
- The board layout and the circuit diagram of the interface are to be provided to the student during the examination.
- Software Required: Open source ARM Development platform, KEIL IDE and Proteus for simulation

SOFTWARE PROGRAMS: PART A

- Design and develop an assembly language program to search a key element "X" in a list of 'n'
 16-bit numbers. Adopt Binary search algorithm in your program for searching.
- 2. Design and develop an assembly program to sort a given set of 'n' 16-bit numbers in ascending order. Adopt Bubble Sort algorithm to sort given elements.
- 3. Develop an assembly language program to reverse a given string and verify whether it is a palindrome or not. Display the appropriate message.
- 4. Develop an assembly language program to compute nCr using recursive procedure. Assume that 'n' and 'r' are non-negative integers.
- 5. Design and develop an assembly language program to read the current time and Date from the system and display it in the standard format on the screen.
- 6. To write and simulate ARM assembly language programs for data transfer, arithmetic and logical operations (Demonstrate with the help of a suitable program).
- 7. To write and simulate C Programs for ARM microprocessor using KEIL (Demonstrate with the help of a suitable program)

Note: To use KEIL one may refer the book: Insider's Guide to the ARM7 based microcontrollers, Hitex Ltd.,1st edition, 2005

HARDWARE PROGRAMS: PART B

- 8. a. Design and develop an assembly program to demonstrate BCD Up-Down Counter (00-99)
 - b. Design and develop an assembly program to read the status of two 8-bit inputs (X & Y)
- 9. Design and develop an assembly program to display messages "FIRE" and "HELP" alternately with flickering effects on a 7-segment display interface for a suitable period of time. Ensure a flashing rate that makes it easy to read both the messages (Examiner does not specify these delay values nor is it necessary for the student to compute these values).
- 10. Design and develop an assembly program to drive a Stepper Motor interface and rotate the motor in specified direction (clockwise or counter-clockwise) by N steps (Direction and N are specified by the examiner). Introduce suitable delay between successive steps. (Any arbitrary value for the delay may be assumed by the student). 11. Design and develop an assembly language program to
- - a. Generate the Sine Wave using DAC interface (The output of the DAC is to be
 - b. Generate a Half Rectified Sine waveform using the DAC interface. (The output of
- 12. To interface LCD with ARM processor- ARM7TDMI/LPC2148. Write and execute programs in C language for displaying text messages and numbers on LCD
- 13. To interface Stepper motor with ARM processor- ARM7TDMI/LPC2148. Write a program

Study Experiments:

- 1. Interfacing of temperature sensor with ARM freedom board (or any other ARM microprocessor board) and display temperature on LCD
- 2. To design ARM cortex based automatic number plate recognition system
- 3. To design ARM based power saving system

Course Outcomes: After studying this course, students will be able to

- Summarize 80x86 instruction sets and comprehend the knowledge of how assembly
- Design and develop assembly programs using 80x86 assembly language instructions
- Infer functioning of hardware devices and interfacing them to x86 family
- Choose processors for various kinds of applications.

Conduction of Practical Examination:

- All laboratory experiments (all 7 + 6 nos) are to be included for practical examination.
- Students are allowed to pick one experiment from each of the lot.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of
- PART -A: Procedure + Conduction + Viva: 08 + 35 +07 (50)
- PART -B: Procedure + Conduction + Viva: 08 + 35 +07 (50)
- Change of experiment is allowed only once and marks allotted to the procedure part to be

Dept. Of Computer Science & Engineering Alva's Institute of Engg. & Yes. Mijar, MOODBIDRI - 574 225