[As per Choice]	Based Credit S	ND SIMULATION system (CBCS) scheme] ic year 2016 -2017) - VIII			
Subject Code	15CS834	IA Marks	20	20	
Number of Lecture Hours/Week	3	Exam Marks	80	80	
Total Number of Lecture Hours	40	Exam Hours	03		
Total Pullion of Decidio Hours	CREDITS -				
Course objectives: This course will					
Explain the basic system cor					
Discuss techniques to model					
Analyze a system and to male			perform	nance.	
Module – 1			1	Teaching Hours	
Systems and system environment; continuous systems, Model of a system Simulation Simulation examples: Principles, Simulation Software: Continuous Scheduling / Time-Advance of Scheduling	tem; Types of N Simulation of c Concepts in Disc	Models, Discrete-Event Syqueuing systems. General crete-Event Simulation. The	stem I ne		
Module – 2 Statistical Models in Simulation :I				10 Hours	
statistical models, Discrete dist process, Empirical distributions. Queuing Models: Characteristics of measures of performance of queuing of queuing systems cont, Steady-st queues,	queuing systeng systemg systems, Long-	-run measures of performa	run ance		
Module – 3					
Random-NumberGeneration:Proppseudo-random numbers, Technique Random Numbers, Random-Variat Acceptance-Rejection technique.	es for generating	g random numbers, Tests f	for	10 Hour	
Module – 4					
Input Modeling: Data Collection; Parameter estimation, Goodness of I process, Selecting input models with models. Estimation of Absolute Performan output analysis, Stochastic nature of their estimation, Contd	Fit Tests, Fitting nout data, Multinger: Types of si	g a non-stationary Poissor variate and Time-Series is imulations with respect to	n nput	10 Hour	
Module – 5					
Measures of performance and their estimulations Continued,Output anal Verification, Calibration And Valverification and validation, Verification	ysis for steady- idation: Optim	state simulations. ization: Model building,		10 Hour	

simulation models, Calibration and validation of models, Optimization via Simulation.

Course outcomes: The students should be able to:

- Explain the system concept and apply functional modeling method to model the activities of a static system
- Describe the behavior of a dynamic system and create an analogous model for a dynamic system;
- Simulate the operation of a dynamic system and make improvement according to the simulation results.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. Jerry Banks, John S. Carson II, Barry L. Nelson, David M. Nicol: Discrete-Event System Simulation, 5 th Edition, Pearson Education, 2010.

Reference Books:

- Lawrence M. Leemis, Stephen K. Park: Discrete Eve nt Simulation: A First Course, Pearson Education, 2006.
- 2. Averill M. Law: Simulation Modeling and Analysis, 4 th Edition, Tata McGraw-Hill, 2007

Dept. Of Computer Science & Engineering Alva's Institute of Engg. & Technology Mijar, MOODBIDRI - 574 225