IINIV	SYSTEM PROC	DAMMING	
		stem (CBCS) scheme	
(Effective fr	om the academic	year 2016 -2017)	
	SEMESTER -	VII	
Subject Code	15CS744	IA Marks	20
Number of Lecture Hours/Week	3	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03
	CREDITS -	03	
Course objectives: This course wil	l enable students	to	
 Explain the fundamental des 	ign of the unix or	perating system	
 Familiarize with the systems 	calls provided in	the unix environment	
 Design and build an applicat 	ion/service over	the unix operating syste	m
Module – 1			Teachin
Tel. 1 di Vinne			Hours
Introduction: UNIX and ANSI Stan	dards: The ANSI	C Standard, The ANSI	I/ISO 8 Hours
C++ Standards, Difference between	n ANSI C and C	++, The POSIX Stand	ards,
The POSIX APIS The UNIX on	A/Open Standard	s. UNIX and POSIX A	APIs:
The POSIX APIs, The UNIX and Common Characteristics.	id POSIX Deve	opment Environment,	API
Module – 2			
UNIX Files and APIs: File Types	The LINIY and	DOCIV Ella Camana	TI O YY
UNIX and POSIX File Attributes	Inodes in IIN	IX System V Applied	The 8 Hours
Program Interface to Files, UNIX	Kernel Support f	or Files Relationship	of C
Stream Pointers and File Descriptor	s, Directory Files	Hard and Symbolic Li	inks
UNIX File APIs: General File API	s. File and Reco	rd Locking Directory	File
APIS, Device File APIS, FIFO File A	PIs, Symbolic Li	nk File APIs.	
Module – 3			
UNIX Processes and Process Control	ol: The Environ	ment of a UNIX Proce	ss: 8 Hours
Introduction, main function, Process	Termination, Co	ommand-Line Argumen	its,
Environment List, Memory Layout	of a C Program,	shared Libraries, Memo	ory
Allocation, Environment Variables, setrlimit Functions, UNIX Kernel	Support for Pro	imp Functions, getrlin	nit,
Introduction, Process Identifiers, for	k vfork evit w	ait waithid wait?	01:
Functions, Race Conditions, exec I	Functions. Chang	ing User IDs and Gro	114
IDs, Interpreter Files, system Function	n, Process Accou	nting. User Identification	n l
Process Times, I/O Redirection. Pro	cess Relationship	s: Introduction, Termin	nal
Logins, Network Logins, Process	Groups, Session	s. Controlling Termina	al l
tegetpgrp and tesetpgrp Functions, J	ob Control, Shel	Execution of Program	ıs,
Orphaned Process Groups.			
Module – 4	1 mi varia		
Signals and Daemon Processes: Sign	als: The UNIX K	ernel Support for Sign	als, 8 Hours
signal, Signal Mask, sigaction, The S	SIGCHLD Signal	and the waitpid Functi	on,
The sigsetimp and siglongimp Functi	ion Dogge Cl	interval Timers, POSIX	i.lb
Timers. Daemon Processes: Introduct Error Logging, Client-Server Model.	ion, Daemon Cha	racteristics, Coding Ru	les,
Module – 5			9
Interprocess Communication: Overv	iew of IDC Mad	oda Dinas	1
Functions, Coprocesses, FIFOs, Syst	em V IPC Mess	age Oueves, Sement	ose 8 Hours
, coprocesses, 111 Os, Syst	on v n c, wiess	age Queues, Semaphor	es.

Shared Memory, Client-Server Properties, Stream Pipes, Passing File Descriptors, An Open Server-Version 1, Client-Server Connection Functions.

Course outcomes: The students should be able to:

- Ability to understand and reason out the working of Unix Systems
- Build an application/service over a Unix system.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Unix System Programming Using C++ Terrence Chan, PHI, 1999.
- 2. Advanced Programming in the UNIX Environment W.Richard Stevens, Stephen A. Rago, 3nd Edition, Pearson Education / PHI, 2005.

Reference Books:

- 1. Advanced Unix Programming- Marc J. Rochkind, 2nd Edition, Pearson Education,
- 2. The Design of the UNIX Operating System Maurice.J.Bach, Pearson Education / PHI, 1987.
- 3. Unix Internals Uresh Vahalia, Pearson Education, 2001.

Dept. Of Computer Science & Engineering Alva's Institute of Engg. & Technology Mijar, MOODBIDRI - 574 225