ADVANCED COMPUTER ARCHITECTURES [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017)			
(Effective II)	SEMESTER – V	ear 2016 -2017)	
Subject Code	15CS72		20
Number of Lecture Hours/Week	4	IA Marks	20
Total Number of Lecture Hours	50	Exam Marks	80
The second of Eccion Hours		Exam Hours	03
Course objectives: This course will	CREDITS - 04		
Describe computer architecture	enable students to		
Measure the performance of a	ue.		
Measure the performance of a Summarize parallel architecture. Modulo 1	architectures in teri	ms of right parameters.	
Module – 1	me and the softwar	e used for them.	
			Teaching
Theory of Parallelism: Parallel Co	mnuter Models 7	The Ctata of C	Hours
and Multicomplifer	Multivector and	CIMID Comments DD 4	
The vest wooders, Program and Ne	TWORK Properties	Conditions of Den 11 1'	300 a 1
-10 Stati Latitioning and Schedill	ing Program Flo	W Machaniana C	1
Architectures. Princin	es of Scalable D	orforman D. C	
and weasures. Parallel Prod	cessing Application	ns. Speedup Performand	20
Zans, scalability Alialysis and Appro	paches.	no, opecaup remornant	~
Module – 2			
Hardware Technologies: Processors a	and Memory Hierar	rchy, Advanced Process	or 10 Hours
recimiology, superscalar and vector	Processors, Memo	ry Hierarchy Technolog	n To Hours
- Head Wellioly Technology.		, and a control of	,,
Module – 3			
Bus, Cache, and Shared Memory, B	us Systems ,Cach	e Memory Organization	s 10 Hours
de Memory Organizations S	edilential and Wa	ale Comeint se .	
Transfer and Duberschial Technic	life I mear Disale	no D 37 41	
Pipeline Processors ,Instruction Pip (Upto 6.4).	eline Design ,Ari	thmetic Pipeline Desig	n
Module – 4			
Parallel and Scalable Architecture	s: Multiprocesso	rs and Multicomputer	s 10 Hours
Multiprocessor System Interconnect Mechanisms, Three Generations	is, Cache Coherer	nce and Synchronizatio	
Mechanisms Multivector and SIMP	of Multicomp	uters ,Message-Passin	g
Mechanisms ,Multivector and SIMD	Computers , Vect	or Processing Principle	S
Multivector Multiprocessors, Compo	ound Vector Proc	essing ,SIMD Compute	r
Organizations (Upto 8.4), Scalable, N	fulfithreaded, and		
atency-Hiding Techniques, Prin	ciples of Mul	tithreading, Fine-Grai	n
Multicomputers, Scalable and Multith	readed Architectui	res, Dataflow and Hybri	d
Iodule – 5			
oftware for parallel programming: P	arallel Models, La	inguages, and Compiler	s 10 Hours
aranci i logianining Models. Paran	el languages and	Commilana D	
marysis of Data Allays Farallel P	rogram Developp	nent and Danie	
VICINITALION AND IVINITATION	Modes Instruc	tion and Court Y	
ynchronization and Multiprocessing	~	- Joioni Deve	
manchism, mistruction Level Parall	elism Computer	Architacture	
arallelism, Instruction Level Parall asic Design Issues ,Problem Def Compiler-detected Instruction Level	elism ,Computer	Architecture ,Contents	3,

Buffer, Register Renaming ,Tomasulo's Algorithm ,Branch Prediction, Limitations in Exploiting Instruction Level Parallelism ,Thread Level Parallelism.

Course outcomes: The students should be able to:

- Explain the concepts of parallel computing and hardware technologies
- Compare and contrast the parallel architectures
- Illustrate parallel programming concepts

Question paper pattern

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

 Kai Hwang and Naresh Jotwani, Advanced Computer Architecture (SIE): Parallelism, Scalability, Programmability, McGraw Hill Education 3/e. 2015

Reference Books:

1. John L. Hennessy and David A. Patterson, Computer Architecture: A quantitative approach, 5th edition, Morgan Kaufmann Elseveir, 2013

Dept. Of Computer Science & Engineering Alva's Institute of Engg. & Technology Mijar, MOODBIDRI - 574 225