7	
	MULTI-CORE ARCHITECTUDE AND PROCESSMENTS
	MULTI-CORE ARCHITECTURE AND PROGRAMMING
	[As per Choice Based Credit System (CBCS) scheme]
	Charles Bused Credit System (CBCS) scheme
	(Effective from the academic year 2016 -2017)

	71
SEMESTER - V	/[

Subject Code	15CS666	IA Marks	20
Number of Lecture Hours/Week	3	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03

Course objectives: This course will enable students to

- Explain the recent trends in the field of Computer Architecture and describe performance related parameters
- Illustrate the need for quasi-parallel processing.
- Formulate the problems related to multiprocessing Compare different types of multipage architecture.

	Compare different types of multicore architectures				
	Module - 1	Teaching Hours			
	Introduction to Multi-core Architecture Motivation for Concurrency in software, Parallel Computing Platforms, Parallel Computing in Microprocessors, Differentiating Multi-core Architectures from Hyper- Threading Technology, Multi-threading on Single-Core versus Multi-Core Platforms Understanding Performance, Amdahl's Law, Growing Returns: Gustafson's Law. System Overview of Threading: Defining Threads, System View of Threads, Threading above the Operating System, Threads inside the OS, Threads inside the Hardware, What Happens When a Thread Is Created, Application Programming Models and Threading, Virtual Environment: VMs and Platforms, Runtime Virtualization, System Virtualization.	8 Hours			
	Module – 2				
	Fundamental Concepts of Parallel Programming: Designing for Threads, Task Decomposition, Data Decomposition, Data Flow Decomposition, Implications of Different Decompositions, Challenges You'll Face, Parallel Programming Patterns, A Motivating Problem: Error Diffusion, Analysis of the Error Diffusion Algorithm, An Alternate Approach: Parallel Error Diffusion, Other Alternatives. Threading and Parallel Programming Constructs: Synchronization, Critical Sections, Deadlock, Synchronization Primitives, Semaphores, Locks, Condition Variables, Messages, Flow Control-based Concepts, Fence, Barrier, Implementation-dependent Threading Features Module – 3 Threading APIs: Threading APIs for Microsoft Windows, Win32/MFC Thread	8 Hours			
	APIs, Threading APIs for Microsoft Windows, Win32/MFC Thread APIs, Threading APIs for Microsoft. NET Framework, Creating Threads, Managing Threads, Thread Synchronization, POSIX Threads, Creating Threads, Managing Threads, Thread Synchronization, Signaling, Compilation and Linking. Module – 4	8 Hours			
-	OpenMP: A Portable Solution for Threading: Challenges in Threading a	8 Hours			
	Loop, Loop-carried Dependence, Data-race Conditions, Managing Shared and Private Data, Loop Scheduling and Portioning, Effective Use of Reductions, Minimizing Threading Overhead, Work-sharing Sections, Performance-oriented Programming, Using Barrier and No wait, Interleaving Single-thread and Multi-thread Execution, Data Copy-in and Copy-out, Protecting Updates of Shared	omours			

Variables, Intel Task queuing Extension to OpenMP, OpenMP Library Functions, OpenMP Environment Variables, Compilation, Debugging, performance

Module - 5

Solutions to Common Parallel Programming Problems: Too Many Threads, Data Races, Deadlocks, and Live Locks, Deadlock, Heavily Contended Locks, Priority Inversion, Solutions for Heavily Contended Locks, Non-blocking Algorithms, ABA Problem, Cache Line Ping-ponging, Memory Reclamation Problem, Recommendations, Thread-safe Functions and Libraries, Memory Issues, Bandwidth, Working in the Cache, Memory Contention, Cache-related Issues, False Sharing, Memory Consistency, Current IA-32 Architecture, Itanium Architecture, High-level Languages, Avoiding Pipeline Stalls on IA-32, Data Organization for High Performance.

8 Hours

Course outcomes: The students should be able to:

- · Identify the issues involved in multicore architectures
- · Explain fundamental concepts of parallel programming and its design issues
- Solve the issues related to multiprocessing and suggest solutions
- Point out the salient features of different multicore architectures and how they exploit parallelism
- Illustrate OpenMP and programming concept

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

 Multicore Programming, Increased Performance through Software Multi-threading by Shameem Akhter and Jason Roberts, Intel Press, 2006

Reference Books:

NIL

Dept. Of Computer Science & Engineering Alva's Institute of Engg. & Technology Mijar, MOODBIDRI - 574 225