| [As per Choice B | ANCED ALGO ased Credit Sys m the academic | ORITHMS
stem (CBCS) scheme]
c year 2016 -2017) | | |---|--|--|-------------------------| | | SEMESTER - | -V | | | Subject Code | 15CS554 | IA Marks | 20 | | Number of Lecture Hours/Week | 3 | Exam Marks | 80 | | Total Number of Lecture Hours | 40 | Exam Hours | 03 | | | CREDITS - | 03 | 100 | | Course objectives: This course will | enable students | to | | | Explain principles of algorith Compare and contrast a numb Describe complex signals and Apply the computational geor Module – 1 | ms analysis apported theoretic based and the same | roaches
ed strategies | | | | | | Teachi
Hours | | Analysis Techniques: Growth funct
equations; Amortized analysis: Agg
String Matching Algorithms: Naive
matching with Finite Automata
Algorithms Module – 2 | regate, Account | ting, and Potential me | thods, | | | | | | | Number Theoretic Algorithms: Eler Solving modular linear equations, The element RSA Cryptosystem, Primal Codes, Polynomials. FFT-Huffma correctness of Huffman's algorithm; Module – 3 | ne Chinese rema
ity testing, Integ
n codes: Con | inder theorem, Powers ger factorization, - Hus | of an | | DFT and FFT efficient implementation | on of FET Crow | h Alexaida D II | - 11- | | Algorithm Shortest paths in a DAG, networks and the Ford-Fulkerson Alg Module – 4 | Johnson's Algori | thm for sparce graphs | Flow 8 Hour | | Computational Geometry-I: Geometr | ic data structure | suging C Vesters D | | | and a triangle, Finding star-shaped po | in space: Finding | ng the intersection of | oints, 8 Hour
a line | | Module – 5 | | | | | Computational Geometry-II: Clippi
Algorithms; Triangulating, monoton
and Graham Scan; Removing hidden | ic polygons; Co
surfaces | k and Sutherland-Hoonvex hulls, Gift wrap | dman 8 Hour | | Course outcomes: The students shou | ld be able to: | | | | Explain the principles of algor | rithms analysis a | pproaches | | | A males different the | d atmata = : = + + - | lve problems | | | Apply different theoretic base | u strategies to so | ive problems | | | Apply different theoretic base Illustrate the complex signals | and data flow in | networks with usage o | ftools | | Apply different theoretic base Illustrate the complex signals Describe the computational ge Question paper pattern: | and data flow in | networks with usage o | f tools | The question paper will have TEN questions. There will be TWO questions from each module. Each question will have questions covering all the topics under a module. The students will have to answer FIVE full questions, selecting ONE full question from each ## module. ## Text Books: - 1. Thomas H. Cormen et al: Introduction to Algorithms, Prentice Hall India, 1990 - 2. Michael J. Laszlo: Computational Geometry and Computer Graphics in C' Prentice Hall India, 1996 ## **Reference Books:** - 1. E. Horowitz, S. Sahni and S. Rajasekaran, Fundamentals of Computer Algorithms, University Press, Second edition, 2007 - 2. Kenneth A Berman & Jerome L Paul, Algorithms, Cengage Learning, First Indian reprint, 2008 Dept. Of Computer Science & Engineering Alva's Institute of Engg. & Technology Mijar, MOODBIDRI - 574 225