DATA STRUCTURES AND APPLICATIONS

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2015 -2016)

Subject Code	15CS33	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03

CREDITS - 04

Course objectives: This course will enable the students to

- Explain fundamentals of data structures and their applications essential for programming/problem solving
- Illustrate linear representation of data structures: Stack, Queues, Lists
- Illustrate linear representation of data structures: Trees, Graphs
- Demonstrate sorting and searching algorithms
- Find suitable data structure during application development/Problem Solving

Introduction: Data Structures, Classifications (Primitive & Non Primitive), Data structure Operations, Review of Arrays, Structures, Self-Referential Structures, and Unions. Pointers and Dynamic Memory Allocation Functions. Representation of Linear Arrays in Memory, Dynamically allocated arrays, Array Operations: Traversing, inserting, deleting, searching, and sorting. Multidimensional Arrays, Polynomials and Sparse Matrices. Strings: Basic Terminology, Storing, Operations and Pattern Matching algorithms.	Hours	Module -1
Programming Examples. Text 1: Ch 1: 1.2, Ch2: 2.2 -2.7 Text 2: Ch 1: 1.1 -1.4, Ch 3: 3.1-3.3,3.5,3.7, Ch 4: 4.1-4.9,4.14 Ref 3: Ch 1: 1.4	10 Hours	Operations, Review of Arrays, Structures, Self-Referential Structures, and Unions. Pointers and Dynamic Memory Allocation Functions. Representation of Linear Arrays in Memory, Dynamically allocated arrays, Array Operations: Traversing, inserting, deleting, searching, and sorting. Multidimensional Arrays, Polynomials and Sparse Matrices. Strings: Basic Terminology, Storing, Operations and Pattern Matching algorithms. Programming Examples. Text 1: Ch 1: 1.2, Ch2: 2.2 -2.7 Text 2: Ch 1: 1.1 -1.4, Ch 3: 3.1-3.3,3.5,3.7, Ch 4: 4.1-4.9,4.14
Module -2		Module -2
Stacks and Queues	10 Hours	Stacks and Oueues
Stacks: Definition, Stack Operations, Array Representation of Stacks, Stacks using Dynamic Arrays, Stack Applications: Polish notation, Infix to postfix conversion, evaluation of postfix expression, Recursion - Factorial, GCD, Fibonacci Sequence, Tower of Hanoi, Ackerman's function. Queues: Definition, Array Representation, Queue Operations, Circular Queues, Circular queues using Dynamic arrays, Dequeues, Priority Queues, A Mazing Problem. Multiple Stacks and Queues. Programming Examples. Text 1: Ch3: 3.1 -3.7 Text 2: Ch6: 6.1 -6.3, 6.5, 6.7-6.10, 6.12, 6.13		Dynamic Arrays, Stack Applications: Polish notation, Infix to postfix conversion, evaluation of postfix expression, Recursion - Factorial, GCD, Fibonacci Sequence, Tower of Hanoi, Ackerman's function. Queues: Definition, Array Representation, Queue Operations, Circular Queues, Circular queues using Dynamic arrays, Dequeues, Priority Queues, A Mazing Problem. Multiple Stacks and Queues. Programming Examples. Text 1: Ch3: 3.1 -3.7

Linked Lists: Definition, Representation of linked lists in Memory, Memory allocation; Garbage Collection. Linked list operations: Traversing, Searching, Insertion, and Deletion. Doubly Linked lists, Circular linked lists, and header linked lists. Linked Stacks and Queues. Applications of Linked lists - Polynomials, Sparse matrix representation. **Programming Examples**

10 Hours

Text 1: Ch4: 4.1 -4.8 except 4.6

Text 2: Ch5: 5.1 - 5.10

Text 2: Ch7: 7.1 - 7.9

10 Hours

Module-4

Trees: Terminology, Binary Trees, Properties of Binary trees, Array and linked Representation of Binary Trees, Binary Tree Traversals - Inorder, postorder, preorder; Additional Binary tree operations. Threaded binary trees, Binary Search Trees - Definition, Insertion, Deletion, Traversal, Searching, Application of Trees-Evaluation of Expression,

Programming Examples Text 1: Ch5: 5.1 -5.5, 5.7

Module-5

Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation Of Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and Depth First Search. Sorting and Searching: Insertion Sort, Radix sort, Address Calculation Sort. Hashing: Hash Table organizations, Hashing Functions, Static and Dynamic Hashing. Files and Their Organization: Data Hierarchy, File Attributes, Text Files and Binary Files, Basic File Operations, File Organizations and Indexing

10 Hours

Text 1: Ch6: 6.1 -6.2, Ch 7:7.2, Ch 8:8.1-8.3 Text 2: Ch8: 8.1 – 8.7, Ch 9:9.1-9.3,9.7,9.9

Reference 2: Ch 16: 16.1 - 16.7

Course outcomes: After studying this course, students will be able to:

- Use different types of data structures, operations and algorithms
- Apply searching and sorting operations on files
- Use stack, Queue, Lists, Trees and Graphs in problem solving
- Implement all data structures in a high-level language for problem solving.

Graduate Attributes (as per NBA)

- 1. Engineering Knowledge
- 2. Design/Development of Solutions
- 3. Conduct Investigations of Complex Problems
- 4. Problem Analysis for suitability of data structures.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Fundamentals of Data Structures in C Ellis Horowitz and Sartaj Sahni, 2nd edition, Universities
- 2. Data Structures Seymour Lipschutz, Schaum's Outlines, Revised 1st edition, McGraw Hill, 2014

Reference Books:

- 1. Data Structures: A Pseudo-code approach with C -Gilberg & Forouzan, 2nd edition, Cengage Learning,2014
- 2. Data Structures using C, , Reema Thareja, 3rd edition Oxford press, 2012
- 3. An Introduction to Data Structures with Applications- Jean-Paul Tremblay & Paul G. Sorenson, 2nd Edition, McGraw Hill, 2013
- 4. Data Structures using C A M Tenenbaum, PHI, 1989
- 5. Data Structures and Program Design in C Robert Kruse, 2nd edition, PHI, 1996

Dept. Of Computer Science & Engineering

Alva's Institute of Engg. & Technology Mijar, MOODBIDRI - 574 225