

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225
Phone: 08258-262725, Fax: 08258-262726

SL NO	CONTENT	PAGE	REMARKS
1	Vision & Mission of Institute	3-4	
2	Vision& Mission of Department	3-4	
3	Calendar of Events	5	
4	Individual time table and workload	6	
5	Class Timetable	7	
6	List of Students	8-9	
7	Attendance register	10	
8	Course syllabus	10-11	
9	PO'S , PEO'S , PSO'S , CO'S	12-14	
10	CO-PO- PSO Mapping Matrix	15-16	
11	Lesson plan coverage details	16	
12	Course material	16	
13	Previous year question paper	17-23	
14	Assignment questions	24	
15	IA Question paper with Scheme	25-40	
16	IA Analysis	41-42	
17	University uploaded IA marks	43-45	
18	List of Underachievers	46	
19	Result analysis	47	
20	CO-PO-PSO attainment		

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K - 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Civil Engineering (CV)

Course Name: HYDROLOGY AND IRRIGATION ENGINEERING (15CV73) Class: Semester 7 A

> Ms Veena D Savanth, **Assistant Professor,** 2019-20

DEPARTMENT OF CIVIL ENGINEERING

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

S. Dhavana Campus, Mijar, Moodbidri, D.K – 57., 425 Phone: 08258-262725, Fax: 08258-262726 PARTMENT OF CIVIL ENGINEERING

DEPARTMENT LEVEL

	-	: : : : : : : : : : : : : : : : : : : :
sformative education by pursuing		To become a leader in the field of Civil
llence in Engineering and Management		Engincering by imparting quality
agh enhancing skills to meet the		education in developing highly competent
ing needs of the community.	VISION	manpower and promote research to meet
To bestow quality technical education		the current and future challenges in Civil
to imbibe knowledge, creativity and		Engineering.
ethos to students community.		To impart knowledge by creating
To inculcate the best engineering		conducive teaching-learning
practices through transformative		environment.
education.		• To produce civil engineers of high
To develop a knowledgeable individual	MISSION	caliber, technical skills and ethical
for a dynamic industrial scenario		values, to serve the society.
To inculcate research, entrepreneurial		• To promote innovation in the
skills and human values in order to		minds of future engineers to face
cater the needs of the society.		the challenges.

and	DEPARTME
	INSTITUTE LEVEL
	Transformative education by pursuing
	execllence in Engineering and Manageme
VISION	through enhancing skills to meet the
	evolving needs of the community.
	To bestow quality technical educati
	to imbibe knowledge, creativity and
	ethos to students community.
	To inculcate the best engineering
	practices through transformative
MISSION	education.
	 To develop a knowledgeable individ
	for a dynamic industrial scenario

Campus, Mijar, Moodabidri, Mangalore Taluk, D.K Phone: 08258-262725, Fax: 08258-262726

ALVA'S INSTITUTE OF ENGINEERING & "ECHNOLOGY

Sebhavana Campus, Mijar, Moodbidri, D.K - 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

PROGRAMME OUTCOMES (PRESCRIBED BY NBA)

science, engineering fundamentals and an engineering specialization to the POI. Engineering knowledge: Apply the knowledge of mathematics, solution of complex engineering problems.

PO2 Problem analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that

and interpretation of data and synthesis of the information to provide valid PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis meet the specified needs with appropriate consideration for the public health, safety, cultural, societal and environmental considerations.

resources, modern engineering. IT tools including prediction and modeling PO5. Modern tool usage: Create, select, apply appropriate techniques, to complex engineering activities with an understanding of the limitations. conclusions

POS. The engineer and society. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional merrening practice.

POS. Ethics: Apply ethical principles and commit to professional ethics and POT. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

as, being able to comprehend and write effective reports and design PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such documentation, make effective presentations, and give and receive clear PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. responsibilities and norms of the engineering practice.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. TISTUCTIONS

PO12. Life-long learning. Recognize the need for, and have the preparation

and abiaty to engage in independent and life-long learning in the broadest

content of technological change

PROGRAMME EDUCATIONAL OBJECTIVES (PEO's)

To provide the students a strong foundation in fundamentals that will enable them to identify and solve real time problems in Civil engineering for Industries and Research activities.

To develop abilities and talents, leading to creativity and productivity in professional and industrial field beyond the curriculum and thus enhance the employability skill.

To explore and apply the modern engineering tools for planning, design, execution and maintenance of works those are technically and economically viable, and socially acceptable.

PROGRAMME SPECIFIC OUTCOMES (PSO's)

engineering structures without overexploitation of · The graduates will have the ability to plan, analyze, design, execute and maintain cost effective civil natural resources.

The graduates of civil engineering program will have the ability to take up employment, entrepreneurship, research and development for sustainable civil society.

The graduates will be able to pursue opportunities demonstrate leadership skills and engage in lifelong for personal and professional growth, higher studies, the civil active participation in engineering profession. learning by

The graduates will be able to demonstrate environmental, regulatory and issues related to civil professional integrity and an appreciation of ethical, projects. engineering

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

(A Unit of Alva's Education Foundation)

Shobhavana Campus, Mijar-574225, Moodbidri, D.K

Phone: 08258-262725, Fax: 08258-262726

Affiliated to VTU Belagavi and Approved by AICTE, New Delhi, Recognized by Govt. of Karnataka

CALENDAR OF EVENTS (ODD SEMESTER 2019-20) BE & MBA

VISION

"Transformative education by pursuing excellence in Engineering and Management through enhancing skills to meet the evolving needs of the community"

MISSION

- To bestow quality technical education to imbibe knowledge, creativity and ethos to students community.
- To inculcate the best engineering practices through transformative education.
- develop a knowledgeable individual for a dynamic industrial scenario.
- To inculcate research, entrepreneurial skills and human values in order to cater the needs of the society.

Week	Month				Days				Activities	
Week	Month	Mon	Tue	Wed	Thu	Fri	Sat	Sun		
1	July	29	30	31					29th: Commencement of III, V & VII-Sem BE	
1					1	2	3	4	1 : Commencement of I - Sem BE	
2		5	6	7	8	9	10	11	1th : Inauguration Program for I-Semester BE 1th to 14th : Induction Program for I-Sem BE	
3	AUG	12	13	14	15	16	17	18	8a: Commencement of III - Sem MBA	
4		19	20	21	22	23	24	25	15th: Independence day	
5		26	27	28	29	30	31			
5								1		
6		3	3	4	5	6	7	8	2 → · Varasiddhi Vinayuka Vratha 10th : Last day of Muharram	
7	-	9	10	11	12	13	14	15	190, 200 21= 1-IA Test for IU, V, VII-Sem Bl	
8	SEP	16	17	18	19	20	21	22	28th : Mahalaya Amavasyo	
1		23	24	25	26	27	28	29	ASSES	
10	5 1 N	30	- N - 1							
10			1	2	3	4	5	б	204 : Gandhi Jayanthi 70 : Ayudhapooja	
11	- 3	7	8	9	10	11	12	13	80: Vijeyudashami 240, 250, 260 H-IA Test for HI, V. VII-Sem	
12	OCT	14	15	16	17	18	19	20	EE and II - Sem MEA	
13		21	22	23	24	25	26	27	25th : Deepavali	
14		28	29	30	31				超线 。	
14				1		1	2	3	Ir : Kannada Rajyothanya	
15		4	5	6	7	8	9	10	15th : Kanakadasa Javanthi	
16	NOV	11	12	13	14	15	16	17	26", 27" 28": HI LA Test for HI, V, VII-Sem B 29": Last Working Day of I-Sem- BE	
17	4	18	19	20	21	22	23	24	30th: Last Working Day of I-Sem- BE 30th: Last Working Day of III, V, VII-Sem- I	
18		25	26	27	28	29	30	1000		
18	DEC				EVS.			1	2" , 3", 4" : III-IA Test for III - Sem MBA	
19	DEC	2	3	4	5	6	7	8	5th: Last Working Day of III-Sem- MBA	

Approved by IQAC Chairman

1

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K - 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

INDIVIDUAL TIMETABLE (ODD SEMESTER 2019-20)

-									9			
1	2		3	4		5	6	7				
9.00 - 9.50	09.50 - 10.40		11.00 - 11.50	11.50 - 12.40		01.40 - 02.30	02.30 - 03.20	03.30 - 05.00	No. of Units			
	ENV Lab 7A-A1					FM (3A)			5			
	HIE (7A)				C H		HIE (7A)		4			
			FM (3A)		B		HIE (7A)		4			
HIE (7A)				FM (3A)	E A		FM (3A)		6			
	В	MT I	LAB 3A -A	A1	K	HIE (7A)			5			
	FM (3A)	T				99			2 26			
	9.50	9.50 10.40 E HIE (7A) BI	9.50 10.40 ENV I HIE (7A) HIE (7A) BMT I	HIE (7A) HIE (7A) BMT LAB 3A -/	ENV Lab 7A-A1 HIE (7A) HIE (7A) FM (3A) BMT LAB 3A -A1 FM	10.40	Description	Solution Solution	10.40			

* EXCLUDING OTHER ACTIVITIES

HOD H.O.D.

Dept. of Civil Engineering nology

Alva's Institute of Enr

Mijar, Moodbluri

Date: 26/07/2019

PRINCIPAL

PRINCIPAL

Alvir Inclinits of Engl. 8 Technology

Mijar, NICODBIUNI - 574 225

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY
Shobhavana Campus, Mijar, Moodbidri, D.K - 574225
Phone: 08258-262725, Fax: 08258-262726

Time Table with effect from 29/07/2019 DEPARTMENT OF CIVIL ENGINEERING

Academ	ic Year	Schen	ne	Semester	Se	Section Room No			Class Coordinator		
2019	2019-20 2015 VII					A	505		Mr. Santhosh K		K
Time	9.00 To 9.50	9.50 To 10.40	10.40 To 11.00	o To To		0	1.40 To 2.30	2.30 To 3.20	2- 2-20	3.30 To 5.00	
MON	DCBS (TR)	ENV LAB 7A-A1 (HGU/VDS) CAD STRUCTURES LAB 7A-A (AGS/MR)				MIWE DRSS (AH) (SP)			Social Activity/Model Making/ Innovation (HGU/SKS/SR)		
TUE	UTP (KA)	HIE (VDS)	DCBS MEI (TR) L				DRSS (SP)	HIE (VDS)	Construction Practices/Consultant (SWT/SND/KA)		ıcı
WED	DRSS (SP)	UTP (KA)	rp R PR	WORK		U	MIWE (AH)	HIE (VDS)		nar Presentatio (HGU/VDS/SF	
THU	HIE (VDS)	DCBS (TR)	A K	PROJECT WORK		С	MIWE (AH)	DRSS (SP)		glish Language Writing YS/SWT/KA)	:
FRI	DCBS (TR)	MIWE (AH)		DRSS (SP)			HIE (VDS)	FUNDAME NTALS (AS)		ern Tools in Ci Engineering S/VDS/AS/SR	
SAT	UTP (KA)	ENV LAB 7A-A2 (HGU/AS) CAD STRUCTURES LAB 7A-A (AGS/MR)					*****			****	
		1-5%		Alloca	tion of	Subjects	77528	9au			L
		Subjects					Staf	Ts .	3. P	Staff Code	
MIWE	15CV71	Municip Wastew Enginee	ater	Industrial	Di	r. H Ajith I	lebbar	АН			
DRSS	15CV72	Design Structu		and Steel	м	r. Surendra	ndra P			SP	
HIE	15CV73	Hydrolo Engine		Irrigation	м	rs. Veena I) Savanth	VDS	Ī		
DCBS	15CV743	Design Bervice		t of Buildin	g M	Ms. Tanvi Rai				TR	Ī
UTP	15CV751	Urban T Plannin		rtation and	М	s. Kavyash	ка	Ī			
ENV LAB	15CVL76	Environ Laborat		l Engineerin	7/	7A-A1 Dr. H G Umeshchandra / Mrs. Veena D Savanth 7A-A2 Dr. H G Umeshchandra/ Mr. Ashish Shetty				HGU/VDS HGU/AS	
CADS LAB	15CVL77	Comput Structu		d Detailing	of 7/	A-A1 -Mr. A	run Kumas	G S/Mr. Moh G S/Mr. Moh	an Raj	AGS/MR AGS/MR	
PROJECT	15CVP78	Project Semina		I +Project		LL FACULT		-, mon		****	

H.O.D.

Jepty of Civil Engineering
Institute of Engg. & Technology
Viliar, Moodbidri - 574 225

Che's instituted to 574 225, D.K.

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K - 574225 Phone: 08258-262725, Fax: 08258-262726 DEPARTMENT OF CIVIL ENGINEERING

VII SEMESTER "A" - SECTION STUDENT LIST 2019 - 20

SL. NO.	USN	NAME OF THE STUDENTS
1.	4AL14CV062	PRAJWAL R
2.	4AL15CV017	ARPITHA B SHETTY
3.	4AL15CV022	BASAVARAJ
4.	4AL15CV061	MUHAMMED NIHAL
5.	4AL15CV073	RAGHAVENDRA V
6.	4AL15CV080	RAVIKEERTHI K C
7.	4AL15CV099	SOIBAM PRITAMJIT SINGH
8.	4AL16CV002	ABHISHEK
9.	4AL16CV004	AKSHAY PRAVEENKUMAR KALMATH
10.	4AL16CV005	AMITH R
11.	4AL16CV006	ANILDA S FERNANDES
12.	4AL16CV007	ANILKUMAR AMBARAYA HAVANI
13.	4AL16CV008	ANOOP G SHIRANI
14.	4AL16CV009	ANUSHA K P
15.	4AL16CV011	ASHWIN Y N
16.	4AL16CV016	BHAGAYSHREE AKKALAKOT
17.	4AL16CV017	Внакатн а С
18.	4AL16CV019	ВНООМІКА Т С
19.	4AL16CV021	BRUNDA Y M
20.	4AL16CV023	CHAITHRA S G
21.	4Af.16CV024	CHANDANA V
22.	4AL16CV026	DHARSHINI T R
23.	4AL16CV028	GANESH L
24.	4AL16CV029	GAUTHAM DAYANAND BANGERA
25.	4AL16CV031	GAUTHAM

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K - 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

26.	4AL16CV032	GURURAJ
27.	4AL16CV036	KEDAR KAMATH M
28.	4AL16CV037	KEERTHANA K C
29.	4AL16CV039	LAISHRAM LINTHOINGANBI
30.	4AL16CV040	LAXMIDEVI AMARESH KARADAKALL
31.	4AL16CV042	M SURAJ ACHARYA
32.	4AL16CV044	MAHESH B
33.	4AL16CV046	MANOJ J D
34.	4AL16CV051	MUSHAHID ALY YUSUF
35.	4AL16CV052	MUTHURABASIMAYUM KRISHNAKUMARI DEVI
36.	4AL16CV053	N H SHARATH
37.	4AL16CV054	NAGALAKSHMI A
38.	4AL16CV057	NEHA C
39.	4AL16CV061	NONGMAITHEM ROSHAN
40.	4AL16CV062	PRABHULING K D
41.	4AL16CV063	PRAJWAL D BORE
42.	4AL16CV065	PRANAV YADAV K V
43.	4AL16CV066	PRAVEEN TIRUPATI KHURADE
44.	4AL16CV071	RAMESH

H.O.D.

HOD

Dept. of Civil Engineering Alva's Institute of Engg. & Technology Mijar, Moodbidri - 574 225

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY
Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225
Phone: 08258-262725, Fax: 08258-262726

Course Title: Hydi	rology and Irrigation Engineeri	ng	
	sed Credit System (CBCS) schem		
	SEMESTER:VII		
Subject Code	15CV73	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
Course Objectives: This course will enable students	CREDITS - 04	Tota	l Marks-100
Understand the concept of hydrology and compo- evaporation and transpiration. Quantify runoff and use concept of unit hydrogra Demonstrate different methods of irrigation, metho Design canals and canal network based on the water Determine the reservoir capacity.	ph.		
Modules		Teaching Hours	Revised Bloom's Taxonomy (RBT) Level
Module -1		1.1	
Hydrology: Introduction, Importance of hydrology availability. Practical application of hydrology, Hyqualitative and engineering representation. Precipitation: Definition, Forms and types of precipitation Symon's and Syphon type of rain gauges, ostations, consistency of rainfall data (double mass cur mean rainfall, estimation of missing data, presentation average curve, mass curve, rainfall hyetographs.	ydrologic cycle (Horton's) itation, measurement of rain fall optimum number of rain gauge tye method), computation of	10 hours	L2, L3
Module -2		728	
Losses: Evaporation: Introduction, Process, fac measurement using IS class-A Pan, estimation using and Rohwer's equations) Reservoir evaporation and a Evapo-transpiration: Introduction, Consumptive use Measurement, Estimation by Blaney-Criddle equation Infiltration: Introduction, factors affecting infiltration equation	empirical formulae (Meyer's control e, AET, PET, Factors affecting, 1, tion capacity, measurement by	10 Hours	L2, L3
Module -3			
Runoff: Definition, concept of catchment, factors aff relationship using regression analysis. Hydrographs: Definition, components of hydrogra hydrograph, assumption, application and limitations, hydrographs, S curve and its computations, Conversion	aph, base flow separation, unit	10 Hours	L2, L4

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

Module -4	77 A &	
Irrigation: Definition. Benefits and ill effects of irrigation. System of irrigation: surface and ground water, flow irrigation, lift irrigation, Bandhara irrigation. Water Requirements of Crops: Duty, delta and base period, relationship between them, factors affecting duty of water crops and crop seasons in India, irrigation efficiency, frequency of irrigation.	10 Hours	L2, L4
Module -5		
Canals: Types of canals. Alignment of canals. Definition of gross command area, cultural command area, intensity of irrigation, time factor, crop factor. Unlined and lined canals. Standard sections. Design of canals by Lacey's and Kennedy's method. Reservoirs: Definition, investigation for reservoir site, storage zones determination	10 Hours	L2, L4
of storage capacity using mass curves, economical height of dam.		

Course outcomes: After studying this course, students will be able to:

- Understand the importance of hydrology and its components.
- 2. Measure precipitation and analyze the data and analyze the losses in precipitation.
- 3. Estimate runoff and develop unit hydrographs.
- 4. Find the benefits and ill-effects of irrigation.
- 5. Find the quantity of irrigation water and frequency of irrigation for various crops.
- Find the canal capacity, design the canal and compute the reservoir capacity.

Program Objectives:

Engineering knowledge

Problem analysis

Interpretation of data

Question paper pattern:

The question paper will have 5 modules comprising of ten questions. Each full question carrying 16 marks

There will be two full questions (with a maximum of three subdivisions, if necessary) from each module.

Each full question shall cover the topics as a module

The students shall answer five full questions, selecting one full question from each module. If more than one question is answered in modules, best answer will be considered for the award of marks limiting one full question answer in each module.

Text Books:

- 1) K. Subramanya, "Engineering Hydrology", Tata McGraw Hill Publishers, New Delhi.
- 2) Jayarami Reddy, "A Text Book of Hydrology", Lakshmi Publications, New Delhi.
- 3) Punmia and LalPandey, "Irrigation and Water Power Engineering" Lakshmi Publications, New Delhi.

Reference Books:

- 1) H.M. Raghunath, "Hydrology", Wiley Eastern Publication, New Delhi.
- 2) Sharma R.K., "Irrigation Engineering and Hydraulics", Oxford & IBH Publishing Co., New Delhi.
- 3) VenTe Chow, "Applied Hydrology", Tata McGraw Hill Publishers, New Delhi.
- 4) Modi P.N "Water Resources and Water Power Engineering"-. Standard book house, Delhi.
- 3) Garg S.K, "Irrigation Engineering and Hydraulic Structures" Khanna publications, New Delhi.

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Academic Year: 2019-20

Department of Civil Engineering (CV)

6. Course Information

6.1 Course Content

Title of the Course : HYDROLOGY AND IRRIGATION ENGINEERING

Semester: 7

Subject Code: 15CV73	IA Marks : 20
Hours/week : 4	Total Hours : 50
Exam Hours: 3	Exam Marks : 80
Course Plan Author: Veena D	Planned Date : 2019-07-29
Checked by : Dr H Ajith Hebbar	At the end of this course student will be able to: 2019-07-29

Objectives: To enable students

- 1 . Understand the concept of hydrology and components of hydrologic cycle such as pricipitation, infiltration, evaporation and transpiration
- 2. Quantify runoff and use concept of unit hydrograph
- 3 . Demonstrate different methods of irrigation, methods of application of water and irrigation procedure
- 4. Design canals and canal network based on the water requirement of various crops
- 5 . Determine the reservoir capacity

Course Outcomes (COs):

- 1. Understand the importance of hydrology and its components
- 2. Measure precipitation and analyze the data and analyze the losses in precipitation
- 3 . Estimate runoff and develop unit hydrographs
- 4. Find the benefits and ill-effects of irrigation
- 5. Find the quantity of irrigation water and frequency of irrigation for various crops
- 6. Find the canal capacity, design the canal and compute the reservoir capacity

12

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY
Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K - 574225
Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

DATE: 20/07/2019

ACADEMIC YEAR:

2019-20

PROGRAMME

B.E. - CIVIL ENGINEERING

SEMESTER

COURSE

HYDROLOGY AND IRRIGATION ENGINEERING

COURSE CODE :

15CV73

CO NUMBER	COURSE OUTCOME
CO-1	Understand the importance of hydrology and its components
CO-2	Measure precipitation and analyze the data and analyze the losses in precipitation
CO-3	Estimate runoff and develop unit hydrographs
CO-4	Find the benefits and ill-effects of irrigation
CO-5	Find the quantity of irrigation water and frequency of irrigation for various crops
CO-6	Find the canal capacity, design the canal and compute the reservoir capacity

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Shebhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K - 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

DATE: 20/07/2019

ACADEMIC YEAR:

2019-20

PROGRAMME

B.E. - CIVIL ENGINEERING

SEMESTER :

7

COURSE

HYDROLOGY AND IRRIGATION ENGINEERING

COURSE CODE

15CV73

PROGRAMME OUTCOMES:

Engineering Graduates will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2 Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Page 2 of 3

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K - 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

CO-PO MAPPING MATRIX

PO/CO	CO-1	CO-2	CO-3	CO-4	CO-5	CO-6
PO1	1	1	0	1	0	1
PO2	2	1	2	0	0	1
РО3	1	0	0	1	0	1
PO4	1	0	1	1	0	1
PO5	0	1	0	2	0	0
P06	1	2	0	2	0	2
PO7	2	2	1	2	2	2
POS	0	0	0	1	0	2
PO9	0	1	0		0	0
PO10	0	0	1	2	2	0
PO11	0	0	0	0	0	0
PO12	1	0	0	0	0	0
PSO1	0	0	0	0	0	0
PSO2	0	0	0	0	0	0
PSO3	0	0	0	0	0	0

0 - NO MAPPING

1 - SLIGHT

2 - MODERATE

3 - HIGH

FACULTY NAME	FACULTY SIGNATURE WITH DATE	FACULTY NAME	FACULTY SIGNATURE WITH DATE
Prof. Veena D Savanth	Neens		
APPROVED BY:			
Prof. H Ajith Hebbar	O2 se	Dr. H G Umeshchandra	Ataga
Prof. Sanjay S	À	Prof. Veena D Savanth	ruen

Page 3 of 3

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

- 11. <u>Lesson plan coverage details</u>
- 12. <u>Course material</u>

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

CBCS SCHEME

UNN [10 LEV0002474

15CV73

Seventh Semester B.E. Degree Examination, Dec.2018/Jan.2019

Hydrology and Irrigation Engineering

Time: 3 hrs.

for equations

Am revealing of identification, appeal in evaluator and

On completing

III DON DELINOR !

dagrenal cress

Max. Marks: 80

Note: 1. Answer FIVE full questions, choosing one full question from each module.

2. Assume missing data suitably.

Module-1

n. With engineering representation, explain hydrologic cycle along with processes involved in

b. Explain how consistency of rainfall data is checked using double mass curve technique.

The average annual rainfall of 5 raingauge stations in a basin are 89, 68, 54, 45, 41 and 55 cm. If the error in the estimation of basin rainfall should not exceed 10%. How many additional raingauges should be installed in the basin.

(05 Marks)

OR

a. Define precipitation. List its types and explain with neat sketch how its amount is measured using Symon's raingange. (08 Marks)

What are the importances of hydrology? With neat sketch explain mass curve of rainfall and rainfall hydrograph. (08 Marks)

Module-2

a. Explain how evaporation amount is measured using IS class-A pan? List the factors affecting it.

b. What is evapotranspiration? Write its measurement using Lysimeter method, with sketch.

c. List the factors affecting evapotranspiration. Write Blaney-Criddle equation used to estimate

ET. (03 Marks)

OR

a. Define infiltration. With neat sketch, explain double ring infiltrometer.

(06 Marks)

b. Write a Horton's infiltration equation used to estimate infiltration rate.

(02 Marks)

e. For a storm of 3 hr duration the rainfall rates are as follows:

 Time Period (minutes)
 30
 30
 30
 30
 30
 30

 Rainfall rate (cm/hr)
 1.4
 3.4
 4.8
 3.2
 2.0
 1.2

If the surface run off is 3.4 cm determine the φ-index and W-index assume initial φ-index is more than 1.4 cm/hr. (08 Marks)

Module-3

5 a. What is runofl? List and explain factors affecting it.

(08 Marks)

Define hydrograph. With sketch explain component parts of hydrograph.

(08 Marks)

Lof2

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K - 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

OR The hourly ordinates of a two hour unit hydrograph are given below. Derive a 6-hours unit

Time (hours)	00	01	02	03	04	05	06	07
Discharge (Cumecs)	00	1.0	2.7			9.8	9.0	7.5
Time (hours)	08	09	10	111	12	13	14	15
Discharge (Cumecs)	6.3	5.0	4.0	2.9		13	0.5	00

Find out the ordinates of a storm hydrograph resulting from a 3 hour storm with rainfall of 3, 4.5 and 1.5 cm during subsequent 3 hour intervals. The ordinates of unit hydrograph are given in the table below

Hours	00	03	06	09	12	15	18
OVH (cumecs)	00	90	200	350	450	350	260
Hours	21	124	03	100	09 [12	7
OVH (cumecs)	190	13	0 80	45	20	00 3	17

Assume an initial loss of 5 mm infiltration index of 5 mm / hr and base flow of 20 cumecs.

(08 Marks)

Moduté-4 Define Irrigation. List and explain benefits and ill effects of irrigation. (08 Marks) What are Duty, delta and base period? Explain factors affecting Duty of water. (08 Marks)

OR

What is Irrigation efficiency? Define different efficiencies of Irrigation water. (05 Marks) What are flow Irrigation and Lift Irrigations. Explain types of flow irrigations. b. (08 Marks) C.

Give relationship between Duty, delta and base period. (i)

Write a short note on frequency of Irrigation. (03 Marks)

Module-5

What is canal? List its types and explain with neat sketch its classification based on Alignment. (08 Marks) (08 Marks)

Explain different storage zones of reservoir with neat sketch.

a. The Channel section is to be designed for the following data:

Discharge, Q = 5 cumecs Lacy's silt factor, f = 1

Side slope = $1\frac{1}{2}$ H to 1 V

Also determine the bed slope of the channel.

(08 Marks)

Explain hydrological investigations of reservoir planning. List the points to be considered for selection of site for a reservoir.

2 of 2

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225
Phone: 08258-262725, Fax: 08258-262726

Question Number	Solution	Marky Allocated
04.	(a) Definition of Infiltration - (1)	6
	Double ring infilhoneter Sketch - (2)	(06)
P	Explaination - (03)	
	(b) Horton's infilhation equation - 60	101
	fp=fc+ (fo-fc) = Kit for o>t etc	(02)
1	where fp = infiltration appeals at any time of the start	
1	of the minfell	
	fo = Initial infectionin capacity @ t=0 fo = find steady state infiltration capacity et = to	
	h = Horton's deay creft	
1	(c) $R = 67 - 20$ $R = 67 - 20$ $R = 67 - 20$ $R = 67 - 34$ $R = 8 - 34$ $R = 8 - 34$	
	3.4 = 67-20, = 8-54 Shingtoper	(08)
	: 20 = 67-34	
1	1 = 1.65 cm/hr - C4 1164 = 1.53 cm/hr - C4	and the same of th
L STATE	Module -3	(e)
05	- Line Strategy	1970
05.	(a) Defo of Runoff - (b) . List of factors affecting number (c)	60
	Explaination of factor with Shatches rough wherever (65)	63)
	(b) Defe of Hydrymph - (i) sticted- (2) compound protes	\sim
1	(i) Court Comp	(B)
	(m) felling (Ressing)	
06.	(a) offsets of with harrisonal -(2)	(6)
	Sum - (33)	
No.	Sim - 0,1,2.7,6,10.7,15.8, 19.9, 22.3, 19.5, 15.4,12.4,9.2	@
	orchisates of boly with the selection	
	0,0.35,0.9 2.0 254 5 12 4 5 2	
	5.13, 4.13, 3.07, 2.20, 1.40, 0.89, 0.48, 0.17, 00	- 1
	Existent except the 121 3/4 at 1000 atc)	
	for left 3hr = 3000 300 (1)	
		- 1

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

Subject Code:	Murks Allocated	. 3
Titlet Solution	7	
Conti		
to sudan purply tom rainfell exited (03)	(08)	
	3	
ordinates of streen hydrogeth - 63)		
20, 110, 490, 990, 13	(6)	
175, 80 and 20 Module 4		
07. (a) Defo of Irrigation - (1)	68	1
Continuition - (05)		
the method Buse property	(%)	i
Factors affecting Dustry, Explaination - (5)	(6)	
Efficiency pole (F)		
Different 131-11	65	
η _c = ωt x 100		1
$\eta_{u} = \frac{100}{100} \times 100$ $\eta_{u} = \frac{100}{100} \times 100$ Any four		
ns = 100		
nd = 100[1-3]		
and May = Way x100	I Brown in the	
(b) Flow Irrigation, Lift Irrigation — (2) Captor Types of flow Irrigation — (1) Percental Irrigation with states — (3)	@	
(1) mushion tragation	and the second	
Cypholotronship beto Duty etalls and Bake period - (3)		1
Marc. D = 8.64 xB B-0 Back period to days D= delta in any D = bucky in heat featured		

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Department of Civil Engineering (CV)

6. Course Information

6.3 Other Assessment

ASSIGNMENT

: HYDROLOGY AND IRRIGATION ENGINEERING

: 15CV73

#: 1 : 5 : 2019-08-15 : 2019-08-20 : 1 : Apply

1.In which regions the Cyclonic, convective, orographic precipitation occurs. 2.Name the Topographic countries. 3.List out the rain gauge station of your district and create a location map using QGIS. 4. What are the possible source of error in measurement of rainfall. 5.How Hydrology is useful in proposing mitigation measures for natural disaster like flood and drought. 6. Explain How satellite can measure the precipitation 7. Suggest a major water resource project and find out a specific hydrological investigation were involved in its design. 8.Discuss the piratical application of hydrology in fish and wide life preservation, recreational use of water and coastal work

#: 2 : 5 : 2019-10-18 : 2019-10-22 : 3,4 : Understand

IEvaporation is indirectly a cooling process justify the statement? 2.Define unit hydrograph write the uses and application? 3.Explain with sketches what do you understand by principle of linearity and principle of time variance in unit hydrograph theory? 4.Discuss various infiltration equations and explain how the constant fc,fo and k in the Horton's equation can be obtained from experiment data? 5.Define phi index and w index and bring out the difference between them. How is phi index determined from rainfall hydrograph? 6.Explain the procedure of deriving unit hydrograph?

#: 3 : 5
: 2019-11-11 : 2019-11-19
: 5,6 : Understand
: 1.What are the benefits or yojanas or scheme given by the new government for formers?
2.How government educating the former regarding irrigation? 3.Explain briefly the selection of site for reservoir? 4.Design procedure for Kennedys' theory? 5.Describe the method of designing the canal based on lacey's theory? 6.Explain with neat sketch storage zones of reservoirs?

ENCULTY

Page 24 of 40

Dept. of Civil Engineering
Alva's Institute of Engg. & Technology
Milar, Moodbidri - 574 225

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

1			ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY, Moodbiddi				
	4	(), (),	DEPARTMENT OF CIVIL ENGINEERING 1- INTERNAL ASSESSMENT				
5	Subj	ect:	r: 7-CBCS Section: B Date: 20 HYDROLOGY AND IRRIGATION ENGINEERING (15CV73) Time: 0 Max Ma Mr Sanjay S	0 Sep 20: 9:30 AM arks: 30	19 - 11:00	AM	
		,.					
			Answer any 2 question(s)			DT/C1	0.4
	Q.No	, -		Marks	со	BT/CL	4.
	1		Explain the Engineering representation of Hydrologic Cycle with a neat sketch	7	CO1	L2	
	•		Briefly explain the different types of Precipitation	8	CO1	L1	Į.
		e.	OR		. 1		
	2	a	With a neat sketch explain the tiping bucket raingauge	8	CO1	L1	
	-	ь	Explain the factors governing selection of site for rain gauge stations.	7	CO1	L1	
						No.	
	3	a	A catchment has six rain gauge stations. In a year, the annual rainfall recorded by the gauges	8	CO2	L3	
			are as follows:				
			Rainfall (cm) 82.6 102.9 180.3 110.3 98.8 136.7 For a 10% error in the estimation of mean rainfall, Calculate the optimum number of stations	io		24 m == - 58	
			in the catchment.	7	CO2	L1	
		b	Explain the factors affecting Evaporation OR			. 4	
			The following meteorological data pertain to a large reservoir witha water spread area of 15	8	CO2	L3	
	4	а	sq. km. The data represents the average value for the day. Water temperature: 24 degree celsius				
			Air temperature : 26 degree celsius Atmospheric pressure : 752 mm of mercury	Switzer #	-	,	
			Wind speed at 0.5 m above ground level: 25.3 km/li				
			Estimate the average daily evaporation from the reservoir using Meyer's equation and Rowher's equation.				
		L	The state of the secretion measurement with a neat sketch	7	co	2 L1	
		t					
			CO1: Understand the importance of hydrology and its components. CO2: Measure precipitation and analyze the data and analyze the losses in precipitation.				
			CO2: Measure precipitation and Language	0			
			(AW)	V.	//		
			(V) 4 (51)	1			
			C HOD A FACULTY	DEPT	DMIN		
			Cy yy				

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

3(a). m=6 P=118.60 cm.	01 02
5 - 11 2 CO (M)	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
P = 118.20 = 11	02
std. diviation,1= 35.04 CM	
coeff. of variation, cv = 29.54	02
$N = \left(\frac{Cv}{E}\right)^2 = \left(\frac{23.54}{10}\right)^2 = 8.73 \approx 9$	08
(L). Factorialtecting evaporation: 7 factors	•
with Explenation	07
4(a). y mayor's equation:	
E= C(es-eq) (1+0.06215V)	01
E = 13.7 mm (day	03.
(ii) Aohwer's equation:	
E=0.771 (1.465-0.0007329a) (0.44+0.07324V) (e1-E4) 01
E = 17.5 mm day	03
	0.8
(5). Ian Evaporation measurement - sketch Explanation	૦૫
	_ 6 } -

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Department of Civil Engineering (CV)

	Contact of the contact of the			Q1		Q2		Q3		Q4		
			a	b	a	ь	a	b		b		
4AL16CV002	ABHISHEK	P	6	6	0	0	0	0	8	5	25	Apply
4AL16CV004	AKSHAY PRAVEENKUMAR KALMATH	Р	6	7	0	0	0	0	5	6	24	Apply
4AL16CV005	AMITH R	P	4	2	0	0	0	5	0	3	11	Understan
4AL16CV006	ANILDA S FERNANDES	Р	0	7	0	0	0	0	5	6	18	Apply
4AL16CV007	ANILKUMAR AMBARAYA HAVANI	Р	0	0	0	0	0	0	5	6	11	Apply
4AL16CV008	ANOOP G SHIRANI	Р	6	6	0	2	0	0	8	6	26	Apply
4AL16CV009	ANUSHA K P	Р	0	1	0	4	8	7	0	0	19	Apply
4AL16CV011	ASHWIN Y N	Р	6	6	0	0	0	0	8	6	26	Apply
4AL15CV017	Arpitha B Shetty	Р	6	0	1	0	0	0	5	6	17	Apply
4AL16CV016	BHAGAYSHREE AKKALAKOT	Р	0	0	4	0	2	7	0	0	13	Remembe
4AL16CV017	BHARATH A C	Р	3	4	0	0	0	0	8	4	19	Apply
4AL16CV019	внооміка т с	Р	6	4	0	0	0	0	8	6	24	Apply
4AL16CV021	BRUNDA Y M	Р	6	6	0	0	1	6	5	3	20	Apply
4AL15CV022	Basavaraj	Р	5	5	0	0	0	6	0	0	16	Understar
4AL16CV023	CHAITHRA S G	Р	6	7	0	0	1	7	2	0	21	Understar
4AL16CV024	CHANDANA V	Р	6	6	0	0	0	2	2	6	20	Understar
4AL16CV026	DHARSHINI T R	Р	6	7	0	0	0	0	5	3	21	Apply
4AL16CV028	GANESH L	Р	6	6	0	0	0	0	8	6	26	Apply
4AL16CV031	GAUTHAM	Р	6	7	0	0	0	0	0	6	19	
100	GAUTHAM DAYANAND BANGERA	Р	1 .	3	0	0	3	5	0	0	12	Understar
4AL16CV032	GURURAJ	P	5	3	0	0					Wil	
4AL16CV036	KEDAR KAMATH M	P	0	6	0	0	0	0	5	2	15	Apply
AL16CV037 H	KEERTHANA K C	P	6	7	0		0	0	3	5	14	Remembe
	AISHRAM	P	6	7	0	0	0	0	5	5	23	Apply
	INTHOINGANBI		-		J	0	0	0	5	6	24	Apply
A	AXMIDEVI MARESH 'ARADAKALL	P	6	7	0	0	0	0	5	7	25	Apply
AL16CV042 M	SURAJ ACHARYA	P	6	7	0	0			W.	45		
AL16CV044 M	AHESH B	Р	6	6	0	0	0	0	3	6	22	Understan
AL16CV046 M	ANOJ J D	P	6	6	0	0	0	5	0	0	17	Understar
KF	ATHURABASIMAYUM RISHNAKUMARI EVI	P	6	6	0	0	0	0	6	6	24	Apply
700	JHAMMED NIHAL	P							3	6	21	Understan
MI white the	JHAMMED NIHAL	Р	5	5	0	0	0	1	100			-

Page 29 of 40

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY
Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225
Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Department of Civil Engineering (CV)

				Q1		Q2		Q3		Q4		
				b		ь	o	ь		ь		
4AL16CV051	MUSHAHID ALY YUSUF	Р	0	0	4	G	0	0	5	6	21	Apply
4AL16CV053	N H SHARATH	р	6	5	0	0	0	0	5	6	22	Apply
4AL16CV054	NAGALAKSHMI A	Р	6	6	0	0	4	4	5	1	20	Apply
4AL16CV057	NEHA C	Р	6	6	0	0	0	0	3	6	21	Understan
4AL16CV061	NONGMAITHEM ROSHAN	Р	6	7	0	0	0	7	0	0	20	Understand
4AL16CV062	PRABHULING	Р	6	4	0	0	8	6	0	0	24	Apply
4AL16CV063	PRAJWAL D BORE	Р	4	0	0	0	0	0	5	6	15	Apply
4AL16CV065	PRANAV YADAV K V	Р	7	6	0	0	0	7	0	0	20	Understand
4AL16CV066	PRAVEEN TIRUPATI KHURADE	Р	3	1	0	0	2	5	2	0	11	Remember
4AL14CV062	Prajwal Matapathi	Р	0	6	0	0	0	0	3	3	12	Remember
4AL16CV071	RAMESH	Р	0	6	0	Ó	0	0	8	6	20	Apply
4AL15CV073	Raghavendra V	Р _	6	4	0	0	0	0	8	3	21	Apply
4AL15CV080	Ravikeerthi K C	Р	6	6	0	0	0	2	8	5	25	Apply
4AL15CV099	SOIBAM PRITAMJIT SINGH	Ab	0	0	0	0	0	0	0	0	0	No Level

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726 **DEPARTMENT OF CIVIL ENGINEERING**

		USN:		-	
	Δ	ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY, Moods DEPARTMENT OF CIVIL ENGINEERING II - INTERNAL ASSESSMENT	oidri		
S	ubj	Ity: Ms Veena D Savanth Time	: 24 Oct : : 03:00 P Marks: 30	M - 04:	30 PM
		Answer any 2 question(s)			
Q	.No	1000	Marks	50	DTIG
1	a	Traportalispiration: What are the factors affecting Evapotranspiration	6	CO2	BT/CL
	b	Describe the method of determining infiltration capacity using a double ring infiltrometer.	6	CO2	L2 L2
	c	Explain briefly I) Infiltration Capacity II) Φ index	3	CO2	L1
		OR	L	9	- 4
2	a	A 6 hr storm produce rainfall intensity of 7,18,25,12,10 and 3 mm/hr in successive 1 hr interval over a basin of 600 sq km. The resulting runoff is assumed to be 2500 hectare meters. Determine the Φ index for the basin	6	CO2	L4
	ь	Explain briefly AET and PET.			
	c	What are the factors affecting infiltration.	6	CO2	L2
		The same of	3	CO2	L2
3	а	Define Hydrograph. Draw a single peaked hydrograph indicating various components and explain	6	CO3	L1
	Ь	The ordinates of 4 hr UH are given below. Obtain the ordinates of 2 hr UH hence obtain the ordinates of 2 hr storm hydrograph if rainfall excess 25mm TIME 0 2 4 6 8 10 12 14 16 18 20 22	6	соз	L2
1		4hr UH 0 12.5 62.5 130 175 180 140 90 50 25 13 0	k l		139
	С	Define Runoff.What are the factors affecting Runoff.	3	CO3	L2
_		OR	1		10
1	a	Explain various methods of Base flow separation	6	соз	L1
	Ь	The ordinates of 4 hr UH of a basin area 630 Km2measured at 2 hour interval are given below. Obtain the ordinates of 6 hr UH for the basin using S- curve technique. TIME 0 2 4 6 8 10 12 14 16 18 20 22 24 4 6 4 7 UH	6	СОЗ	L4
-	-			A	
1	c	Explain the assumptions made in deriving the Unit Hydrograph.	3	CO3	12
		CO2: Measure precipitation and analyze the data and analyze the losses in precipitation CO3: Estimate runoff and develop unit hydrographs			

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

2.	b) Actual Evapotranspiration AET -> soil & plant pattor -> influenced by density of vegetation	- 3M
2	and the state of t	ted
	adequate water supply to fully vegetal	- 3 M
	Surface	(6H)
•	() Factors - infiltration soil moisture, compaction, surface con	ver condition
	Temperature & other	- (3M)
3	a) Hydrograph Define	- IM - 2M
	Explain Components	- 3M (6H)
	0 25 100 160 190 170 110 70 30 20 00	2 22 6 06 - (6M) - 1M
	dornois and &	- 5M (3H)
4	a) Explain 3 methods of Boxe flow separat	10n - (6H)
	b) 2h ordinates for UH	
	0 2 4 6 8 10 12 14 16 18 20 22	
	0 16.5 66 122 175 168 142 89 49.5 30 7.26 11	-6
	e) Assumption of UH.	- (6 M)
	effective rainfall unipamy distributed duration	w.r.to alcu &
	DH & total Volume of direct run off.	any (3) - (841)
	Neery	A STATE OF THE STA

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Department of Civil Engineering (CV)

				Q1			Q1			Q3			04			
			•	b	c		b	c	•	b	•	a	b			
AL INCVIOUS	APHISHEX	P	3	4	0	0	0	0	1	2	2	4	4	3	18	Analyza
AAL PROVING	AKSHAY PRAVEENKUMAR KALMATH	r	5	6	,	0	0	0	0	2	2	5	2	3	22	Understan
EAL TECVINS	AMETHR	P	2	3	0	2	0	0	1	2	1	0	0	0	9	Understar
4AL TROVOCE	ANLDA S FERNANDES	r	6	6	2	0	0	0	5	2	3	0	0	0	24	Understar
4AL18CV007	ANILKUMAR AMBARAYA HAVANI	P	0	0	0	0	0	0	0	2	0	0	0	0	2	No Level
4AL16CV008	ANOOP G SHIRANI	P	3	5	1	0	0	0	0	0	0	5	6	3	23	Analyze
EAL 16CVDDF	ANUSHA K P	P	5	6	1	0	0	0	0	0	0	6	6	3	27	Analyze
44L16CV011	ASHMNY N	P	5	5	1	0	0	0	0	0	0	5	6	3	25	Analyze
EAL 150VD17	Apitu B Shety	Ab	0	0	0	0	0	0	0	0	0	0	0	0	0	No Level
4AL 16CV016	BHAGAYSHREE AKKALAKOT	P	3	3	1	0	0	0	4	1	2	3	0	3	14	Understan
4AL16CV017	BHARATH A C	P	3	4	1	0	0	0	3	2	3	0	0	0	16	Understan
EAL16CV019	ВНООМКА Т С	P	5	5	0	0	0	0	6	2	2	5	0	3	20	Understan
6AL16CV021	BRUNDA Y M	Ab	0	0	0	0	0	0	0	0	0	0	0	0	0	No Level
UL15CV022	Basavaraj	P	3	4	1	0	0	0	0	0	0	0	2	0	10	Understan
AL160V023	CHAITHRA'S G	Р	3	4	0	0	0	0	3	2	3	5	6	3	21	Analyze
AL16CV024	DHANDANA V	P	5	5	2	0	0	0	5	2	3	5	0	2	22	Understan
VAL 16CV026	DHARSHINI T R	Р	5	6	1	0	0	0	6	6	3	0	0	0	27	Understan
AL16CV028	GANESH L	P	6	5	2	0	0	0	0	0	0	5	6	3	27	Analyze
AL160V031	GAUTHAM	P	5	5	1	0	0	0	0	0	0	5	6	3	25	Analyze
	GAUTHAM DAYANAND BANGERA	Р	3	4	0	0	0	2	0	0	0	0	6	3	16	Analyze
AL160V032	GURURAJ	P	2	4	0	0	0	0	0	0	0	4	6	0	16	Analysis
AL16CV036	KEDAR KAMATH M	P	3	5	0	0	0	0	0	0	0	3	6	2		Analyze
AL160V037	KEERTHANA K.C	Ab	0	0	0	0	0	0	0	0	0	0	0	0	19	Analyze
	LAISHRAM LINTHOINGANBI	P	6	4	1	0	0	0	0	0	0	5	6	3	25	No Level Analyze
	LAXMOEVI AMARESH KARADAKALL	P	3	5	0	0	2	3	0	0	0	5	6	3	22	Analyze
AL16CV042	M SURAJ ACHARYA	P	3	3	1	0	0	0	0	0	0	1				
AL16CV044	MAHESH B	P	5	0	0	0	2	1	0	0	0	0	6	3	17	Analyze
AL16CV046	D L LCNYM	P	3	3	2	0	0	0	3	2	3		6	3	14	Analyze
	MATHURABASIMAYUM KRISHNAKUMARI DEVI	P	5	4	1	0	0	0	5	6	2	0	0	0	19	Analyze Understand

Page 32 of 40

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Department of Civil Engineering (CV)

				QI			Q2			Q3			Q4			
			8	b	C	a	b	C	a	b	c	a	b	c		
AL16CV051	MUSHAHID ALY YUSUF	P	4	5	1	2	2	2	0	0	0	4	3	3	20	Analyze
4AL16CV053	N H SHARATH	Р	3	5	1	0	0	0	0	0	0	6	3	0	18	Analyze
4AL16CV054	NAGALAKSHMI A	Р	4	5	0	0	0	0	5	2	2	5	2	3	19	Understan
4AL16CV057	NEHA C	Р	5	6	1	0	0	0	0	0	0	5	6	3	26	Analyze
4AL16CV061	NONGMAITHEM ROSHAN	Р	6	1	1	0	0	0	4	2	3	0	0	0	17	Understan
4AL16CV062	PRABHULING	Р	3	3	1	0	0	0	0	0	0	3	2	3	15	Understan
4AL16CV063	PRAJWAL D BORE	Р	4	3	1	0	0	2	0	0	3	0	2	3	13	Understan
4AL16CV065	PRANAV YADAV K V	Р	1	6	2	0	0	0	6	2	3	0	0	0	20	Understar
4AL16CV066	PRAVEEN TIRUPATI KHURADE	Р	6	5	2	0	0	0	0	0	0	4	2	0	19	Understar
4AL14CV062	Prajwal Matapathi	Р	3	2	1	0	0	0	0	0	0	0	2	1	9	Understar
4AL16CV071	RAMESH	Р	3	5	1	0	0	0	0	0	0	5	6	3	23	Analyze
4AL15CV073	Raghavendra V	Р	5	5	1	0	0	0	4	2	2	0	0	0	19	Understar
4AL15CV080	Ravikeerthi K C	Р	6	5	1	0	0	0	5	2	3	0	0	0	22	Understar
4AL15CV099	SOIBAM PRITAMJIT SINGH	P	6	4	0	0	0	0	4	2	2	0	0	0	18	Understa

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

№1/25/2019

USN: 4-AL16(VOS)

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY, Moodbidd DEPARTMENT OF CIVIL ENGINEERING III - INTERNAL ASSESSMENT

Semester: 7-CBCS Section: B Subject: HYDROLOGY AND IRRIGATION ENGINEERING (15CV73)

Time: 09:30 AM - 11:00 AM Max Marks: 30

Date: 27 Nov 2019

Faculty: Mr Sanjay S

				Answer any 2 quest	tion(s)		
0	No	and many the second of the second of		ATTENDED - THE REAL PROPERTY AND THE PERSON NAMED IN COLUMN TO SERVICE A	P Sug	Marks	со
-		Discurre the fac	ctors affecting the Duty	art house. From technique or special part of the property of the technique		7	CO4
1	b	A water course crop A is 40% days and Crop	has a culturable comma		e intensity of irrigation for p A has a base period of 20 ge of water course if the Delta	8	CO4
-				OR			
2	а	Derive the rela	ationship between Duty,	Delta and Base period.	•	7	CO4
- Annahilana	ь			and Duty of various crops und acity if the canal losses are 20	der a canal system are given in % and reservoir losses are	8	CO4,CO
1		Crop	Base period (Days)	Duty at the field (ha/cu)	Area under the crop (ha)		-
1		Wheat	120	1800	4800		
		Sugar cane	360	800	5600		
-		Cotton	200	1400	2400		
1		Rice	120	900	3200		
		Vegetables	120	700	1400		
No. of Concession,		A Company of the Company of the Company				L	L
3	а	Explain the ge	neral considerations for t	he alignment of a canal		7	CO5
The second secon	b		nel section for the follow cumecs, Silt factor: 1, Sic	ing data: le slope : ½:1. Also find the lo	ngitudinal slope	8	CO5
-				OR			1
4	а		fferent classifications of c	TO DE		7	CO5
-	Ь	Design an Irrig	gation channel on Kenned i m=1.05. The channel ha	dy's theory, to carry a discharges a bed slope of 1 in 5000.	ge of 45 cumecs. Take	8	CO5

CO4: Identify the system of irrigation and evaluate the water requirements for the crop.

CO5: Explain the types, alignment and Design of canals

N=0.0225 and m=1.05. The channel has a bed slope of 1 in 5000.

CO6: Determine the reservoir capacity.

https://alvasgroup.dni-edu.com/alvasgroup_aiet/#/faculty/schedule/questionpaperpdt/5dd8b23ff0118b313474c53c

1/2

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K - 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

0

0

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Shobhavana Campus, Mijar, Moodbidri, D.K - 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

- IIIA SCHEME

Sem: 7

Sub: Hydrology & Irrigation Engl Sub Code: ISCV73

1 × 7

Date: 27-11-2019

Time: 9.30 1011.00 AM.

Max Marks: 30

Module Covered: 04,05

CO's Covered: 04,05,06

a) Factors affecting duty. 1. Omethod & System q irrigation.

@ Application of water, cultivation @ Base period, climate, canal condition.

@ Time & flequency stc

any seven Euch

1. 6) crop A: Duly = 1728 hec/aw.

Discharge - 0,278 cur

Duly = 810 hec/cun CLOPS:

Discharge = 0,8 cum

(8H)

2. a) Relation blu Duty, Delta & Base period

water Supplied for D hectales = DXA XIO Cub-m - 2M

= Bx24×60×60 i for 1 cumic

5 = 8.64B (7H)

della: 0.576,3888, 1,234, 1,150, 1,48 9. 6)

volume: 2764.8, 21772,8, 2961,6,3686.4,2072

EV = 33260 hec-m.

- 2M 211.

capacity = 47245 hec-m.

(BH)

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

		4
3. a) considerations for alignment of c	and	iou
-> high Command ala, Economi -> Avoid Road, Railway, Villa	ital, realled 45 cont	
- belanced olipth of cutting		()
curve min any	ראו ד	(7M)
3b) V = 0,773 mlsec	— In	
A = 38,8 50.m	- In	
f = 26 m	-114	
0 = 1.67 m B = 22.26 m	- 3H	
R = 1.49	- IM	0
S = 1		
S = \frac{\gamma 880}{1}	-IM	(84)
4. a) charification of conals		
-> source of supply _ permanent		
financial output < Production	Ve .	10-10-10-10-10-10-10-10-10-10-10-10-10-1
-> function = Irrigation Feedy		
Poure , Naviga		n n
> Boundary surpres _ Allyvi	w'	
. Non-	- AllaVlal	•
-> Discharge -> main -> Bo	wasch < High	
4 6)	eunu	(7H)
Y= 10 & 917 .		
b = 2.16m	- 2h	
B = 21m	- 2 M	
V = 0.946 mis	— 2M	
V0 = 0.945 m/s	- 24	(643)
The second secon		
Quent	Chy HOD	

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Department of Civil Engineering (CV)

		Serving the Duty	7	4	L2
	a b	Discuss the factors affecting the Duty A water course has a culturable command area of 1200 hectares. The intensity of irrigation for crop A is 40% and for B is 35%, both the crops being rabi crops. Crop A has a base period of 20 days and Crop B has a base period of 15 days. Calculate the discharge of water course if the Delta for crop A is 10 cm amd for crop B is 16 cm.	8	4	L2
		OR			
2	· a	Derive the relationship between Duty, Delta and Base period.	7	4	L2
2	b	The base period, intensity of irrigation and Duty of various crops under a canal system are given in the table below. Find the reservoir capacity if the canal losses are 20% and reservoir losses are 12%. Crop Base period (Days) Duty at the field (ha/cu) Area under the crop (ha) Wheat 120 1800 4800 Sugar cane 360 800 5600 Cotton 200 1400 2400 Rice 120 900 3200 Vegetables 120 700 1400	8	46	L3
3	T a	Explain the general considerations for the alignment of a canal	7	5	Ll
3	b	C. J. C. Having Jotes Discharge	8	5	L3
	_	OR			
4	a	Explain the different classifications of canals	7	5	LI
4	t	Design an irrigation channel on Kennedy's theory, to carry a discharge of 45 cumecs. Take N=0.0225 and m=1.05. The channel has a bed slope of 1 in 5000.	8	5	L3

		ar and a second	Q	1	•	12	C	23	٥	4		
			•	b		b	•	ь	•			
IAL16CV002	ABHISHEK	P	0	8	5	8	5	0	e	4	18	Apply
IAL 16CV004	AKSHAY PRAVEENKUMAR KALMATH	P	3	6	0	0	4	•	0	0	21	Apply
4AL 16CV005	AMITH R	Р	3	5	5	0	2	4	3	6	17	Apply
4AL16CV006	ANILDA S FERNANDES	P	0	e	7_	•	4	8	0	o	27	Apply
4AL16CV007	ANILKUMAR AMBARAYA HAVANI	Р	0	0	6		0	0	•	6	24	Apply
4AL16CV008	ANOOP G SHIRANI	Р	0	0	7	8	0	0	0	0	15	Apply
4A: 16CV009	ANUSHA K P	P	0	0	7	8	6	7	0	0	28	Apply

Page 36 of 40

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Department of Civil Engineering (CV)

			C	1)		27		as a		04		
			•	b		ь	U	b	•	6		
AL16CV011	ASHWIN Y N	р	0	0	5	8	0	3	0	0	16	AUGH
AL15CV017	Arpitha B Shetty	P	0	3	0	2	0	0	1	6	22	AUSAI
AL16CV018	BHAGAYSHREE AKKALAKOT	P	3	8	0	8	0	0	4	7	25	Apply
AL16CV017	BHARATH A C	Р	0	0	7	7	0	0	6		25	Apply
AL16CV019	ВНООМІКА Т С	P	3	8	0	0	0	0	3	7	21	Asst
AL16CV021	BRUNDA Y M	Р	2	3	6	В	5	0	0	3	21	Austr
AL15CV022	Basavaraj	Р	4	8	0	0	3	6	0	0	21	Aust
IAL16CV023	CHAITHRA S G	Р	3	8	6	8	0	0	4		24	Apply
IAL16CV024	CHANDANA V	P	6	3	7	7	6	3	0	0	23	Aprily
4AL16CV026	DHARSHINI T R	P	2	5	1	8	3	8	0	4	20	Apply
4AL16CV028	GANESH L	P	0	8	6	8	6	8	0	0	28	
4AL16CV031	GAUTHAM	P	0	3	0		0	2	0	2	5	Apply
4AL16CV029	GAUTHAM DAYANAND BANGERA	Р	0	0	4	0	4	0	0	0		Ho Level Understand
4AL16CV032	GURURAJ	Р	0	0	7	8	0	0	0	0	15	Austy
4AL16CV036	KEDAR KAMATH M	P	0	0	6	7	0	8	0	0	21	Apply
4AL16CV037	KEERTHANA K C	Р	7	4	7	8	3	0	6	5	26	Apply
4AL16CV039	LAISHRAM LINTHOINGANBI	Р	0	0	1	8	0	0	0	8	17	Apply
4AL16CV040	LAXMIDEVI AMARESH KARADAKALL	Р	0	0	8	8	0	0	6	6	26	Apply
4AL16CV042	M SURAJ ACHARYA	Р	1	0	1	6	2	0	2	4	13	Apply
4AL16CV044	MAHESH B	Р	4	8	0	0	0	0	5	8	25	Apply
4AL16CV046	MANOJJD	P	4	3	0	0	0	0	0	0	7	Understand
4AL16CV052	MATHURABASIMAYUM KRISHNAKUMARI DEVI	Р	0	0	6	6	0	0	0	6	18	Apply
4AL15CV061	MUHAMMED NIHAL	Р	0	0	3	8	0	0	6		23	Apply
4AL16CV051	MUSHAHID ALY YUSUF	Р	0	0	6	8	6	8	0	0	28	Apply
4AL16CV053	N H SHARATH	Р	0	0	7	8	0	0	0	0	15	Apply
4AL16CV054	NAGALAKSHMI A	Р	5	3	6	6	5	0	0	0	17	Apply
4AL16CV057	NEHA C	P	1	0	8	4	0	0	0	0	10	Apply
4AL16CV061	NONGMAITHEM ROSHAN	Р	0	0	8	8	0	0	3	0	17	Apply
4AL16CV062	PRABHULING	P	2	0	0	8	0	0	0	0	16	Apply
4AL16CV063	PRAJWAL D BORE	Р	6	2	0	0	4	8	0	0	20	Apply
4AL16CV065	PRANAV YADAV K V	P	6	4	0	0	0	0	0	е	18	Apply
4AL16CV068	PRAVEEN TIRUPATI KHURADE	Р	6	2	6	0	0	0	0	0	7	Understand

Page 37 of 40

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY
Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225
Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Department of Civil Engineering (CV)

				21		22		23		4		
			•	b	•	ь				•		
4AL14CV062	Prajwal Matapathi	Р	1	5	0	0	0	0	5	4	15	Acces
4AL16CV071	RAMESH	Р	0	0	0	8	0	£		•	THE	Accept
4AL15CV073	Raghavendra V	Р	3	8	0	0	3	0	0	4	THE	Understand
4AL15CV080	Ravikeerthi K C	Р	0	0	0	8	0	ε	0	Œ	115	Accepte
4AL15CV099	SOIBAM PRITAMJIT SINGH	Р	0	0	7	8	0	0	£	ŧ	25	Autor

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K - 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

HYDROLOGY AND IRRIGATION ENGINEERING 15CV73 7TH SEM A SEC(2019-20)

Roll. No.	USN	NAME	I IA (15 M)	II IA (15 M)	III IA (15 M)	AVG IA(15 M)	ASSIG (05 M)	AVG IA (30 M)
1	4AL14CV062	PRAJWAL R	06	05	08	07	05	12
2	4AL15CV017	ARPITHA B SHETTY	09	AB	11	10	05	15
3	4AL15CV022	BASAVARAJ	08	05	11	10	05	15
4	4AL15CV061	MUHAMMED NIHAL	10	09	12	11	05	16
5	4AL15CV073	RAGHAVENDRA V	11	10	07	11	05	16
6	4AL15CV080	RAVIKEERTHI K C	13	11	08	12	05	17
7	4AL15CV099	SOIBAM PRITAMJIT SINGH	AB	09	15	12	05	17
8	4AL16CV002	ABHISHEK	13	09	09	11	05	16
9	4AL16CV004	AKSHAY PRAVEENKUMAR KALMATH	12	11	11	12	05	17
10	4AL16CV005	AMITH R	06	05	09	08	05	13
11	4AL16CV006	ANILDA S FERNANDES	09	12	14	13	05	18
12	4AL16CV007	ANILKUMAR AMBARAYA HAVANI	06	01	12	09	05	14
13	4AL16CV008	ANOOP G SHIRANI	13	12	08	13	05	18
14	4AL16CV009	ANUSHA K P	10	14	14	14	05	19
15	4AL16CV011	ASHWIN Y N	13	13	08	13	05	18
16	4AL16CV016	BHAGAYSHREE A	07	07	13	10	05	15
17	4AL16CV017	BHARATH A C	10	08	13	12	05	17
18	4AL16CV019	BHOOMIKA T C	12	10	11	12	05	17
9	4AL16CV021	BRUNDA Y M	10	AB	14	12	05	17
20	4AL16CV023	CHAITHRA S G	11	11	12	12	05	17
21	4AL16CV024	CHANDANA V	10	11	12	12	05	
22	4AL16CV026	DHARSHINI T R	11	14	10	13	05	17
23	4AL16CV028	GANESH L	13	14	14	14	05	18
24	4AL16CV029	GAUTHAM DAYANAND B	06	08	04	07	05	19
25	4AL16CV031	GAUTHAM	10	13	03	12	05	12
26	4AL16CV032	GURURAJ	08	08	08	08		17
27	4AL16CV036	KEDAR KAMATH M	07	10	11	11	05	13
28	4AL16CV037	KEERTHANA K C	12	AB	13	13	05	16 18
29	4AL16CV039	LAISHRAM LINTHOINGANBI	12	13	09	13	05	18
30	4AL16CV040	LAXMIDEVI AMARESH K	13	11	13	13	05	18
31	4AL16CV042	M SURAJ ACHARYA	11	09	07	10	05	15
32	4AL16CV044	MAHESH B	09	07	13	11	05	16
33	4AL16CV046	MANOJ J D	12	10	04	11	05	16
34	4AL16CV051	MUSHAHID ALY YUSUF	11	10	14	13	05	18
		Page 1 of 2						

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY
Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K - 574225
Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

Roll. No.	USN	NAME	I IA (15 M)	II IA (15 M)	III IA (15 M)	AVG IA(15 M)	ASSIG (05 M)	AVG IA (30 M)
35	4AL16CV052	MUTHURABASIMAYUM KRISHNAKUMARI DEVI	11	12	09	12	05	17
36	4AL16CV053	N H SHARATH	11	09	08	10	05	15
37	4AL16CV054	NAGALAKSHMI A	10	10	09	10	05	15
38	4AL16CV057	NEHA C	11	13	05	12	05	17
39	4AL16CV061	NONGMAITHEM ROSHAN	10	09	09	10	05	15
40	4AL16CV062	PRABHULING K D	12	08	08	10	05	15
41	4AL16CV063	PRAJWAL D BORE	08	07	10	09	05	14
42	4AL16CV065	PRANAV YADAV K V	10	10	09	10	05	15
43	4AL16CV066	PRAVEEN TIRUPATI K	06	10	04	08	05	13
44	4AL16CV071	RAMESH	10	12	08	11	05	16

FACULTY

H.O.D. Dept. of Civil Engineering Alva's Institute of Engg. & Technology Mijar, Moodbidri - 574 225

Page 2 of 2

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

Visvesvaraya Technological University

ALVA S INSTITUTE OF ENGINEERING AND TECHNOLOGY, MOODBIDRI

Branch: CV

Scheme : 2015

Semester: 7

D. u.	cii. CV	30	neme : .	2015	5	emester	: /			
51 NO.	USN	15CV71	15CV72	15CV73	15CV743	15CV751	15CVL76	15CVL77	15CVP78	STUDENT
1	4AL14CV062	15	16	12	18	15	15	20	95	
2	4AL15CV017	20	18	15	20	18	19	20	92	
3	4AL15CV022	17	13	15	16	18	14	20	60	
4	4AL15CV061	17	15	16	19	19	16	20	94	
5	4AL15CV073	15	15	16	17	19	16	20	92	
6	4AL15CV080	16	17	17	18	17	16			
7	4AL15CV099	18	19	17	20	20	17	20	96	
8	4AL16CV002	19	18	16	19	20		20	95	
9	4AL16CV004		16	17	19	19	19	20	96	
10	4AL16CV005		15	13	17	17	15	20	94	
11	4AL16CV006		18	18	20	19	18	20	92	
12	4AL16CV007		12	14	14	16	19	20	98	
13			12	18	17	19	15 15	20	93	
14	4AL16CV009		19	19	17	19	18	20	96	
15			16	18	18	19	18	20	98	
16			15	15	18	17	17	20	96	
17		_	14	17	17	20	14	20	98	
18			14	17	17	17	16	20	92	
19			19	17	18	16	17	20	98	
20			19	17	20	19	18	20	94	
21	_		18	17	19	19	17	20	92	
22			19	18	20	20	17	20	98	
23	_	70000	17	19	19	20	19	20	97	
24			12	12	18	16	18	20	90	
2	_		15	17	18	20	19	20	94	
2	and the second second second		13	13	18	17	15	20	94	
2	7 4AL16CV03	6 18	12	16	19	18	-18-	20	92	
2	8 4AL16CV03	7 18	19	18	19	19	16	20	94	
2	9 4AL16CV03	9 20	17	18	20	19	19	20	98	
3	0 4AL16CV04	0 19	17	18	19	19	18	20	94	
3	1 4AL16CV04	2 18	15	15	19	19	19	20	95	
3	2 4AL16CV04	4 17	12	16	18	20	18	20	95	
3	3 4AL16CV04	16 17	19	16	18	20	18	20	96	
3	4 4AL16CV05	51 20	19	18	20	20	19	20	92	
3	5 4AL16CV0		19	17	20	18	19	20	98	
3	6 4AL16CV0		16	15	18	19	18	20	95	
3	7 4AL16CV0		17	15	17	17	16	20	95	3
3	8 4AL16CV0	57 17	13	17	17	18	16	20	95	

Report ID : VTU5e04732911A434AL

2019-12-26 02:27:56

Page 1 of 3

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

SI NO.	USN	15CV71	15CV72	15CV73	15CV743	15CV75	15CVL76	15010.77		STUDEN
39	4AL16CV061	20			-	_	13CVL/6	15CVL77	15CVP78	SIGNATUI
40	4AL16CV062		14	15	18	17	18	20	98	
41	4AL16CV063		12		16	18	18	20	90	
42	4AL16CV065	17	14	14	13	16	16	20	60	
43	4AL16CV066		14	15	19	17	18	20	98	
44	4AL16CV071	18	18	13	16	17	18	20	60	
45	4AL16CV074	16	13	16	20	19	18	20	96	
46	4AL16CV076	19	18	15	19	15	17	20	97	
47	4AL16CV077	17	18	16	20	16	18	20	85	
48	4AL16CV078	15	13	16	20	18	18	20	96	
49	4AL16CV080	20	18	14	19	15	16	19	93	
50	4AL16CV084	20	17	19	20	19	19	20	99	
51	4AL16CV085	20	16	15	20	19	18	20	97	
	4AL16CV086	18	14	16	18	19	17	20	98	
	4AL16CV087	18	18	16 19	20	18	17	19	90	
$\overline{}$	4AL16CV088	20	14	17	20	19	18	20	98	
	4AL16CV089	16	17	14	20	18	16	19	95	
$\overline{}$	4AL16CV090	17	14	16	19	15	16	19	93	
_	4AL16CV093	20	18	19	19	14	17	19	98	
_	4AL16CV094	17	13	14	19	18	17	20	85	
_	4AL16CV095	17	16	19	20	16	18	20	93	
	4AL16CV096	18	16	19	20	18	18	20	98	
_	4AL16CV099	19	20	14	20	19	20	20	98	
_	AL16CV101	15	13	14	17	17	16	20	97	
_	AL16CV103	19	18	20	20	19		20	96	
_	AL16CV104	17	16	15	19	15	19	20	97	
	AL16CV106	18	15	16	20	16	17	20	85	
	AL16CV107	19	14	18	20	19	18	19	98	
_	AL16CV108	20	17	19	20	19	19	20	90	
_	AL16CV109	19	14	17	20	17	17	18	98	
_	AL16CV110	20	16	18	20	18	17	20	97	
_	AL16CV111	15	12	16	19	14	13	18	94	
-	AL17CV400	17	13	14	18	16	18	19	97	
_	AL17CV401	19	14	16	17	16	17	19	92	
-	AL17CV403	14	13	13	17	14	16	20	94	
_	AL17CV404	17	12	17	20	12	17	20		
_	AL17CV405	20		18	20	20	17	20	98	
_	AL17CV407	_		15	16	15	15	20	98	
-	L17CV408		-	16	20	14	16	19	98	
-				17	20	19	19	20	98	
-				15	20	15	18	19	94	
		-		14	20	15	18	20	98	
4A	LITOTAL	-		17	19	17	16	20	90	
4A	11/0432-			_	20	17	15	20	98	
4Al	1/6					16	14	20	90	
4AL	176441					17		20	99	
441	.17CV415	16	.5	5	19			20	33	

Trant ID: VTU5e0473291IA434AL

2019-12-26 02:27:56

Page 2 of 3

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

SI NO.	USN	15CV71	15CV72	15CV73	15CV743	15CV751	15CVL76	15CVL77	15CVP78	STUDENT SIGNATURE
85	4AL17CV416	16	16	14	19	13	17	19	95	
86	4AL17CV417	17	15	15	20	18	17	19	95	
87	4AL17CV418	19	14	16	20	15	17	19	98	
88	4AL17CV419	17	14	15	20	15	14	19	98	
89	4AL17CV420	18	13	15	20	15	17	20	98	
90	4AL17CV421	17	12	16	19	14	18	19	95	
91	4AL17CV422	18	16	17	20	14	17	19	96	
92	4AL17CV423	18	14	15	19	14	17	20	97	
-x-	Faculty Signature									xxxxxxxx

^{* -} values are either optional subjects or the faculty has not yet entered the marks

HOD Seal and Signature

PRINCIPAL
Seal and Signature

H.O.D.

Dept. of Civil Engineering

Alva's Institute of Engg. & Technology

Mijar, Moodbidri - 574 225

Report ID: VTU5e0473291IA434AL

2019-12-26 02:27:56

Page 3 of 3

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY
Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K - 574225
Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

Roll. No.	USN	NAME	I IA (15 M)	II IA (15 M)	III IA (15 M)	AVG IA(15 M)	ASSIG (05 M)	AVG IA (30 M)
35	4AL16CV052	MUTHURABASIMAYUM KRISHNAKUMARI DEVI	11	12	09	12	05	17
36	4AL16CV053	N H SHARATH	11	09	08	10	05	15
37	4AL16CV054	NAGALAKSHMI A	10	10	09	10	05	15
38	4AL16CV057	NEHA C	11	13	05	12	05	17
39	4AL16CV061	NONGMAITHEM ROSHAN	10	09	09	10	05	15
40	4AL16CV062	PRABHULING K D	12	08	08	10	05	15
41	4AL16CV063	PRAJWAL D BORE	08	07	10	09	05	14
42	4AL16CV065	PRANAV YADAV K V	10	10	09	10	05	15
43	4AL16CV066	PRAVEEN TIRUPATI K	06	10	04	08	05	13
44	4AL16CV071	RAMESH	10	12	08	11	05	16

FACULTY

H.O.D. Dept. of Civil Engineering Alva's Institute of Engg. & Technology Mijar, Moodbidri - 574 225

Page 2 of 2

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225
Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

Result analysis