MOODBIDRI - 574 225
Affiliated to VTU, Belgaum and Approved by A.I.C.T.E., New Delhi

COURSE BOOK

(ACD - 08, ACD - 09, ACD - 10, ACD - 12, ACD - 13)

(Odd / Even)	gth sun A &	B Sec Design De Structures
	TIME SLOT	stant Design of Structures
wed 9:55 am	to 10:50 om Thu	9:00 om to 9:55 om
Name of the Teacher :	light. N VIL Engineering	Defaltment

(A Unit of Alva's Education Foundation) Shobhavana Campus, Mijar-574225, Moodbidri, D.K Phone: 08258-262725, Fax: 08258-262726

CALENDAR OF EVENTS (EVEN SEMESTER - 2017) BE, M.TECH & MBA

Week	k Month		Days				# of working	Activities			
		Mon	Tue	Wed	Thu	Fri	Sat	Sun	Days	2202273330	
1	JAN	30	31						02		
2				1	2	3	4	5	04	4th: Commencement of Sports for staff/students	
3		6	7	8	9	10	11	12	05	11th : Sports Day	
4	FEB	13	14	15	16	17	18	19	06	15th : Commencement of Literary, Fine Arts and cultural activates	
5	*	20	21	22	23	24	25	26	05	24th: Shivaratri	
6		27	28						02	27th, 28th :Project Evaluation – Phase-II	
6				1	2	3	4	5	04		
7		6	7	8	9	10	11	12	06		
8	MARCH	13	14	15	16	17	18	19	06		
9		20	21	22	23	24	25	26	06	23th, 24th, 25th : I-IA Test	
10		27	28	29	30	31			04	29th: Ugadi 30th :Submission of Activities Results 31th :Project Evaluation-Phase-III	
10							1	2	01	1st :Project Evaluation-Phase-III	
11		3	4	5	6	7	8	9	05	7th : Traditional Day	
12	APRIL	10	11	12	13	14	15	16	05	14th: Good Friday	
13		17	18	19	20	21	22	23	06		
14		24	25	26	27	28	29	30	06	27 th , 28 th , 29 th : II-IA Test	
15		1	2	3	4	5	6	7	05	1 ^{at} : May Day 4 th : Last date for Project Report Submission 5 th : Talents Day, 6 th : College Day	
16		8	9	10	11	12	13	14	06	13th : Final Year Project Exhibition	
17	MAY	15	16	17	18	19	20	21	06		
18		22	23	24	25	26	27	28	06	22 nd ,23 rd , 24 th : III-IA Test	
19		29	30	31					03		

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

INDIVIDUAL TIMETABLE (EVEN SEMESTER 2017)

Name of the Faculty			Mr. Nikhil N Assistant Professor				With Effect From: 13/02/2017			
Period	1	2	T	3	4	T	5 6 7		T	
Time	09.00 – 09.55	09.55 – 10.50	E A	11.10 – 12.05	12.05 - 01.00		02.00 – 03.00	03.00 - 04.00	04.00 - 05.00	No. of Units
Monday	ERDS (8 A&B)	ZATIOTO IDE DATICIT			СН	L	PROJECT WORK		6.5	
Tuesday	E	XT.SYS :A2 BATCH (6 A)			er .	N C	EXT	EXT.SYS :B2 BATCH (6 B)		6.0
Vednesday		IINAR BA)			ERDS (8 A&B)	В	CIVIATION – FORUM ACTIVITIES			3.0
Thursday		SEMINAR (8 B)			R	PI	ROJECT W	ORK	2.5	
Friday		SEMINAR (8 B)			K	ERDS (8 A&B)	,	DEPT. MEETING	3.5	
Saturday	ERDS (8 A&B)	EXT.SYS :A1 BATO (6 A)		CH					5.0	
Other Activitie Class Coordina		urvey Camp (Officer	, Worksho	p Coordinato	r				
					- P - G - G - G - G - G - G - G - G - G	•		Tot	al Units*	26.5

^{*} EXCLUDING OTHER ACTIVITIES

() () () -

Dept. of Civil Engineering
Alva's Institute of Engg. & Technology
Mijar, Moodbidri - 574 225

PRINCIPAL PRINCIPAL

Alva's Institute of Engg. & Technology, Mijar, MOODBIDRI - 574 225, D.K.

Date: 13/02/2017

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

VIII SEMESTER "A" – SECTION STUDENT LIST (2016 – 17) Earthquake Resistance Design Structures (10CV835)

Name of Faculty: Mr. Nikhil N

SL. NO.	USN	NAME OF THE STUDENTS	
01	4AL13CV001	ABHILASH	
02	4AL13CV015	AMBILI M P	
03	4AL13CV026	BASANAGOUDA BASARADDI ✓	
04	4AL13CV039	HARIKESH S P	
05	4AL13CV040	HARSHITH A S	
06	4AL13CV050	MANJUNATHA V	
07	4AL13CV065	PRANIL KUMAR	
08	4AL13CV078	SACHIN KUMAR SINDAGERI	

Date: 30/01/2017

H.O.D.

HOD

Dept. of Civil Engineering Alva's Institute of Engg. & Technology Mijar, Moodbidri - 574 225

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

VIII SEMESTER "B" - SECTION STUDENT LIST (2016 - 17) Earthquake Resistance Design Structures (10CV835)

Faculty: Mr. Nikhil N

SL. NO.	USN	NAME OF THE STUDENTS
01	4AL13CV083	SANGMESH
02	4AL13CV085	SANTOSH KAMBLE
03°	4AL13CV086	SARFRAZ ALI
04	4AL13CV089	SHASHIKANTH
05	4AL13CV099	SREERAJ S PILLAI
06	4AL13CV103	THOKCHOM SATISH KUMAR
0.7	4AL13CV107	VIJAYA REDDY
08	4AL13CV115	HEMANTHA KUMAR K R
09	4AL13CV116	JITHIN P
10	4AL13CV124	SNEHA K
11	4AL13CV125	SHINS T WILSON
12	4AL14CV402	CHINIVALARA MANJUNATHA
13	4AL14CV403	GURUBASAVARAJ M
14	4AL14CV407	KALAKALESHWARAYYA GANACHARI
15	4AL14CV408	KIRAN M L
16	4AL14CV409	LAKKAPPA
17	4AL14CV410	LOHITH V
18	4AL14CV411	MAHENDRA SHEENA PUJARI
19	4AL14CV412	MANJUNATH GOUDAR
20	4AL14CV413	MANJUNATH PANCHAMUKHI
21	4AL14CV417	PRAVEENKUMAR B M
22/	4AL14CV418	RAVIKIRANA S
23	4AL14CV419	SALIMPASHA
24	4AL14CV421	SHANKAR BADIGER
25	4AL14CV422	SHIVAKUMAR GANTISIDDAPPANAVAR
26	4AL14CV424	SHRAVANAKUMAR SHRIGANNAVAR
27	4AL14CV428	VASANTH KUMAR R S
28	4AL14CV430	VINAY KUMAR
29	4AL14CV432	VINAY K Y

Date: 30/01/2017

HOD 3. (01/ 2017)

H.O.D.

Dept. of Civil Engineering

Alva's Institute of Engg. & Technology

Mijar, Moedbidri - 574 225

Shobbarana Campus, Muar, Mondabairi, Mangalore Taluk, D.K. 37 1993 Phone 18828-269723, Fax 18928-269726

DEPARTMENT OF CIVIL ENGINEERING

VIII Semester (A & B Section) – I Internal Assessment Test
EARTHQUAKE RESISTANT DESIGN OF STRUCTURES (10 CV834)

	Roll	No:	USN: 4 A L	
	Date		gs: 3.0 0 pm - 04.8 0 pm	Max.Marks:50
		Note:		
			nswer ANY 2 FULL question from each part.	
		2) M	lissing data, if any, may be suitably assumed and	d indicated.
			nswers should be specific and precise.	
		4) D	raw neat sketches wherever necessary.	
)			PART -A	
	1.a.	Explain internal structure of earth	h.	6 marks
	b.	Explain plate tectonic plate theor	ry.	6 Marks
	2.a.	What is strong ground motion	? How earthquake is classified from strong	
		ground motion point of view.	9	6 Marks
	b.	Explain design spectrum for elast	cic system.	6 Marks
	3.	What is vertical irregularity? Expl	ain any 2 vertical irregularities.	12 Marks
			PART -B	
	4.	The earthquake record obtained	l at an station shows the amplitude of ground	
			me interval between the arrival of primary &	
			e nominal properties of rock in the locality is	
			ulus of 140,000 MPa, Poisson's ratio is 0.28 &	
			mpute epicentral distance, also determine the	
		local magnitude of earthquake.	impute epicential distance, also determine the	12 Morto
	-			13 Marks
	5.a.	Explain magnitude & intensity of	earthquake.	6 Marks
	b.	With neat figure explain seismic	instrument.	7 Marks
	•	What are electic ways ? Further		
	6.	What are elastic waves? Explain.		13 Marks

ALVA'S INSTITUTE OF ENGINEERING AND TECHNOLOGY: MIJAR, MOODBIDRI

DEPARTMENT OF CIVIL ENGINEERING

Subject Title Galthqualce Rosistant Design of Subject code: 100834

the outer cole surlounding the inner cole has a thickness of 2259 km & composed of hickel & inner cole has iron alloyed with silica. The temperature at the cole is about 2500°C

Plate tectonic is the movement of 7 major Plates of earth clust.

Malement of these Plates is due to the generation of convectible cullent inside the earth. generation of convenctible cullent is due to huge temperature differences the cole & aust. Due to these movement, displacement will take Place in the locks of earth. Due to displacement work has been done if this work will be stored in the lock in the form of energy colled as strain energy.

Due to this displacement a sudden stip will take place in the faults of lock, length of faults may vary from Im to many km, due to slip stoled energy will be released which will induce

Violent shotcing of earth colled colthquote.

99% of ER's token place on the boundaries of plates (The countries like Jopan, california; san flancisto lies on the bolder of the plates) such earth quarkes are colled as interplate ER's 1% of ER's tokes place within the plates colled as interplate ER's (Mahalastla ER in 1993).

Bhuy ER had a magnitude of 6 to 7, energy leleaded was for times that of energy releaded during atom bomb dlapped on Hirakima.

Tectoric plates are!

- 2) South American Plate.
- 3 Eulosian Plate
- 4) African Plate
- 6) Indo-Austhalian Plate
- 7) Antaltic Plate

the epicentle, only on been glound & only

for shallow Eg,

- 2) A moderately long, extremely pregular motions
 This is associated with moderate distance from
 the focus & occurs only on firm glound. This
 Est are usually of almost equal severity in
 all directions.
 - Ho from the filtering of E9 of the pleceding types through layers of soft soil that exhibit unear or almost lineal behaviour of soil of from the successive wave reflectains at interpret of these mantles.
 - 4) A glound motion involving large scale perma - next deformation of the ground & at site of inte - lest there may be slides of soil liquid - faction
- 25) This is constlucted from estimated peak values for glound acceleration, glound velocity & glound -d displacement. This specthum is constructed because

) .	Answer/Solution	Marks
_	DIT is intended for the disign of new structure	S .
	2) For evaluation of seismic sofety of existing	
	structures to resist future Ed.	52.
	3) The major response spectlum for different	Our y
	glount motion becorded at the same site duli	h
	-g different Ed contains uneven, but the peak	i e y
	& the vallyes are not some at the same	70 C
٠	periods.	1/8
	1999 1923	211-1-
	Duests do a Miller 1980 and bourbon	10.0- 120-
	Itig shows the response spectrum for ground	1.02
	motion recolded at some site duling post 3	-ol
	Edition of the D	4.41
	Similarly it is not possible to predict the	- \ \
	jagged of uneven response spectra in all its	
	details for a glound motion that may occur	1-
	in the future. Thus the disign spectrum should consists a set of smooth curves of serie	
:	a straight lines with one curve too each	
	revel of damping.	É

The design specthism disclibes relative strength required at different periods for design perpose. Se, Actual strength specification requires all owable stress values & damping. The design specthum is derived from smooth specthum of an assemble of an Ed recoldes.

3) Done of the comojol contlibutions for damage of structure during strong earthquorce is dis cartinuity in load fath. The structures should contain a continuous toad poth to thankfer seismic load induced due to acceptation of each structural elements. The failure of strength & toughthe of individual elements together may lead to complete collapse of structure during glound motion. Hence all structural & hon - structural elements should be adequately connected together to plavide sufficient strength of the continues path.

The Good general boad posts is as follows: Eq forces which originates in all elements of the building are delivered through structural connections to

Marks

to horizontal diaphragm. The horizontal diaphragm distributes all this lands to vertical force resisting system which the toursfeld load sofely to foundation. The examples of load path illegulalities are dis - continuous columns, sheal wall, blacing frames, that arises a floating box construction. In this case of columns of sheal walls that do not continue up to the glound but end at an appel level is induced to evertuining forces to another resisting elements of lower level. This imposition of overtuining forces overfrelms the columns of lower level through connecting element is vertical geometric irrigulalities.

A vertical set back is a geometry illegalating in Vertical Plane. It is considered when herizo notal dimension of the lateral force resisting system in any stoley is more than 150% of that in an adjacent stoley. The set back can also visualized as a vertical le entrant coines, the general solution of set back plablem is total seismic separation in plan through separate slc. So that politions of the building are been to viblate independently, when the building is not separated, check the lateral force less sting elements using dynamic analysis.

Given

A = 5.85 mm ts -tp = 5.5 sec E = 140,000 MPa

M=0,28 S=2719V/m

) .	Answer/Solution	Marks
	ts $-tp = \frac{\Delta}{V_S} - \frac{\Delta}{V_P}$ 140,000 MPa = 140,000 × 106 Pa $S = 27 \text{ ICN/m}^3$ = 2.7 g/cm ³ $S = 26 \text{ CH}^4 \text{ L}$	2_
**	$\frac{14000 / 10}{2(1+0.25)}$ $G = 5.46 \times 10^{10} \text{ N/m}^2$ $G = 5.46 \times 10^{14} \text{ N/cm}^2$ $G = 5.46 \times 10^{14} \text{ dynes/cm}^2$	4
•	$V_s = \int \frac{5.46 \times 10^{11}}{2.7} = 4.996 \text{ cm/s}$ $V_p = \int \frac{(K + \frac{4}{3}.4)}{(1 - 2.44)}$ $E = 3 K (1 - 2.44)$	
	$K = \frac{\varepsilon}{3(1-24)}$	7

. .

•

$$ts-tp=\frac{\Delta}{V_S}-\frac{\Delta}{V_P}$$

 $5.5=\frac{\Delta}{4.5}-\frac{\Delta}{8.137}$

3

10

FI

Magnitude of the magnitude is a quantited ive me absolute measure of the size of an ealthounder. Eig magnitude is a measure of the amount of energy released during an Eo, Depending on Size, nature 2 location of Eo, sei smologist use different method to estimate magnitude. There is only one magnitude per Eo, But magnitude value of ven by different seismological observers for an event may vary. The uncertainity in an estimate of the magnitude is about to:3.

There are valious magnitude scales in use. These scales diffel from each other because, those are delived from different work comparent of EQ.

Intensity - Intensity is a qualitative mean -le of the stlength of an ealthquake. It gives a gladation of stlength of ealthquake using observed damage to the structure of glound of heaction of humans to the Ea sha -king . An Ea has many intensities. The highest is near the epicentle & ploglessively to lower glade at further away. This measurement is not instrumental.

The Populal intensity scale is modified mescallic instrument (MME) with 12 gladation denoted by homan no flom. I to 12. Another intensity scale developed for central & eastern two pean states is known as madveder-sponhewer-1colni/c(MSK) intensity scale. The 12 gladation MSK scale differ with MME in details only. En India IS 1893 palt-I-2002 also lefels MSK.

Flostic works are the earthquake works who -ich belease large strain energy at the focus these clostic works are called seismic works of they though the earth surface.

Seisnic would ale classified as: -

-) Body walles
- 2) Sulface walles.

Answer/Solution

Marks

1) Body world

i) Plimary waves ii) secondary waves.

i) Plimary would to sound waves. These waves are bastest would a consequently 1st to alive at a seismic station. I would can also more though solid lock a fluids, provies are also known as compressional waves, because of the pushing a pulling they do.

Velocity of provies is 4.8 km/s, somtimes animals can heal the powered of an ealthqualie.

Exondary world - This waves are commenty known as sheal world a also known as thanked - se world. This world moved in the dilection of palticle motion. S-world can though through solid por locks but it cannot make through water of liquid because liquid do not have any sheal strength. This world are slow in motion compaled to pure -ves. They though out a test. Valying velocity through the solid patts. S-world are more damperars type of world because they are lodge - I world. Normally S-world because with a veloci

- ty & 3 lems

S-world

Answer/Solution

Marks

2) Boso

2) Body works

i) love works ij) Rayleigh world.

i) tale works - The 1st kind of sauface works are called love works, Named oftel A.E.H. Love who esiplained the mechanism of genelation of love works. These are plansvelse vit - lations & are confined to the outer skin of the clust. They are fostest surface works & more the glound from one side to side. Love works ploduce entirely horizontal motion.

love works

1) Rayleigh waves -> The other kind of suspended waves, Nomed for Lord Rayleigh, who described the gene lation of Rayleigh waves. Royleigh waves lolls along the glound, hence it moves the glound up & down & Side to side in the direction that the wave is moving. Most of the shaking felt from an earthquake is due to Rayleigh waves.

Rayligh works

Shebbarana Compas, Mour. Mandabales, Mangalaro Talich, D.K. 37 1993.
Phone 1985 to 1985 Fac. 1985 to 1985.

DEPARTMENT OF CIVIL ENGINEERING

VIII Semester (A & B SECTION) – II Internal Assessment Test
EARTHQUAKE RESISTANT DESIGN OF STRUCTURES (10 CV834)

Roll No.	USN: 4 A L CV
----------	---------------

Date: 27/04/2017

Timings: 3.00 pm - 4.30 pm

Max.Marks:50

Note:

- 1) Answer ANY 2 FULL question from each part.
- 2) Missing data, if any, may be suitably assumed and indicated.
- Answers should be specific and precise.
- 4) Draw neat sketches wherever necessary.
- 5) IS:1893-2002 (part-1) is permitted

PART -A

1. What are horizontal irregularities? Explain.

12 marks

2.a. What is ductility? Explain the role of ductility in earthquake resistant structure.

6 Marks

b. Explain Mode Shapes and Fundamental Period

6 Marks

3. A 4 storey RC frame as shown in fig. Q(3) is in zone IV. The loads are lumped at floors, the soil is assumed to be hard rock & building is to be used as hospital. Determine the base shear & the distribution of storey shear as per IS:1893. Draw load diagram & also calculate shear force.

12 Marks

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574226 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

PART-B

4.a. Explain aseismic design philosophy.

6 Marks

 Explain 3 advantages of design philosophy and basic assumption made in analysis of earthquake resistant structure.

7 Marks

5.a. Explain seismic co-efficient method & state assumption made in seismic co-efficient method.

7 Marks

6 Marks

b. Briefly explain the procedure involved in seismic co-efficient method.

6. A 4 storey RC frame as shown in fig. Q(6) is in zone IV. The loads are lumped at floors, the soil is assumed to be hard rock & building is to be used for commercial purpose. Determine the base shear & the distribution of storey shear as per IS:1893. Assume SMRF, thickness of infill walls 250mm & 150mm in transverse & longitudinal direction, depth of slab is 100mm, size of column is 250X450 mm, size of beams 250X400mm & 250X350mm in transverse & longitudinal direction, floor height is 3.5m, unit weight of RCC is 25kN/m³ & unit weight of infill is 20 kN/m³

13 Marks

fig. a (6).

ALVA'S INSTITUTE OF ENGINEERING AND TECHNOLOGY: MIJAR, MOODBIDRI

DEPARTMENT OF CIVIL ENGINEERING

Subject Title: Ealthquake Resistant Design of Stuctures.

Subject code: 100834

Q.NO Description of Answers Marks Holizontal irregulatitus ale: a) Tolsion illegularities. ADDR Tolsion illegularity shall be considered when floor diaphragms all ligid in their own plan in les - ation to the vertical structural elements that resist the lateral folkes. Tolsion illegulality's considered to exist when the max storey of -ft, computed with design eccentlicity, at one end of the structure transvelse to an axis is mole than 1.2 times of the one stoley out the 2 ends of the structures. The lateral force lesisting element should be well balanced system that is not subjected to

significant tolsion. Significant tolsion will be taken as the condition where the distance of stoley's center of liquidity & stoley's center of moss is gleated than 20%. of the width of the structure wither in major plan dimension.

Answer/Solution Marks Bre-entlant colnels. H 70.15-0.20 Re-entlant colnels. The le-entlant colorels of the buildings are subjected to two types of plablem, building configura
tion of an L, T, H, + due to lack of tensile a
facity & force concentration. According to code,
Plan Configuration of a structure of its lateral forces
resisting system contains he - entlant colores, where
both Plajections of the structure beyond the le-en
both Plajections of the structure beyond the le-en
thant Colorel are greater than 15% of its planding -noion in the given dilection. 6 3 Non-Polatles system

when voltical load lesisting elements are not pololled of symmetrical about the major orthogonal axis of the lateral force losisting system of the building, the situations are often faced by and tects. This condition results in high probability of tensional forces under a ground motion, because the centre of moss is centre of ligidity does not coincide. This problem is aften exaggerated in the triangular of wedge shaped buildings resulting from street inter-section at an ocute angle.

d) Diaphrogm discontinuity

The diaphlagm is hosizontal lesistance element that than offices blu vertical resistance element. The diaphlagm discontinuity may occur with about variation in stiffness, including those having cut off of open aleas greater than 50'/. If the glass en closed diaphragm alea, of change in effective diaphragm stiffness of mole than 50'/, from one storey to the reset. The diaphragm acts as a hosizontal blam. Its ends acts as franges.

	** The state of th	Marks
٦.	Answer/Solution	
2.0	Ductility is defined as the copocity of the moterials, systems of structures to absorb energy by deforming in the elastic range. In a safety of building from collapse is on the bost	
	of energy, which must be impalted to the strains in older to make it fail. In older to make it fail. Therefore ductility of a structure in fact is one	28felmano
*	the most impoltant foctors office of a build the plimary tosk of an engineer designing a build to be . EQ resistant is to ensue that the building to be . EQ resistant is to ensue that the building will possess enough ductility. So the ductility of a structure depends on the type	J .
	material used. 6) It is possible to build ductile structule with R if cale is taken in the design to plovide the join with sufficient abutments that can adequately a fine the conclute.	
٥	I the elastic peoperties a mass of building course to develop a viblatory motion when they are subjected to dynamic action.	
:	2) This Viblation is similar to Vibration of a vice steing, which consists of a fundamental tone is the additional contlibution of valious harmonics.	
_	Jundamental mode of viblation; the addition conflibration of valious modes, which viblates at higher flequencies.	3

The state of the s	Marks
Answer/Solution	IVIERKS
Step-3 - Determination of horizontal selsmic co-e	梦
- cient.	
An= 2 I Sa = 0.24x	
= 0.09	4
Step4 - Determination of design base sheal.	
VB = Anw.	37.4
weight of 1st, 2nd & 3ed stoley = 3000 KM	
weight of 4th stoley = 2500 km.	
: Total weight = (2000 x3) +2500	
= 11,500 KM	8
= NB = 11,500×0,09	
= 1035 KM	9
Step ;) istelibration of equivalent totaled boa	d
Step 6 - Distribution & equivalent totaled loa Q1 = VB [w,h,2 + w2h2+w3h3+w4h4]	0.10
- 1035 3000 x 3.5 ²	10:57
$= 1035 \left[\frac{3000 \times 3.5^{2}}{(3000 \times 3.5^{3}) + (3000 \times 3.5^{2}) + (3000 \times 3.5^{2})} + (3000 \times 3.5^{2}) + ($	
= 370 to 37.86 W	10

1004500 HOBS

1

11) Resist major FR without damage.

١.

- 2) Actual folces that appeal on structures during to ale much higher than the design forces that specifies in the code. The basic critelia of Ea resistant design should be based be based on lateral strength as well as deformability a ductility capacity of structures with limited damage a no collapse.
- 3) The design lateral folces specified in the code shall be considered in each of the 2 of thogonal direction of the Structure, the design lateral force shall be considered along I direction at a time & not in both directions simultaneously.
 - 4) Veltical inestia fosces ale to be considered in design unless it is not significant.
- b) Advantages of design Philosophy
 - 1) Aftel mind EQ the building will be fully operational within a short duration of time & lethofitting cost will be small.
 - 2) Aftel modelate ED building will be functional once the retelepiting wolk of main members are over.
 - 3) After strong Ed the building will be functional once the lethofitting work of main members is over.

Marks

Basic assumptions

DAN ER casses impulsive glound motion which can be complexes with charge in peliod & amplitude losting tol a small dulation.

- 2) EQ is not likely to occur simultaneously with winds of powerful floods & sea works
- 3) the value of ejastic modulus of materials when ever lequiled may be taken as the one used for static analysis, unless mole définite value is avaita -ble.
- 4) The values of modulus of elasticity for valious construction materials display large variations.

Seismic condysis of most structures is still coolied out on the assumption that the lateral borce is equivalent to the actual loading. This method requiled less effort because shapes of mode of viblation are not requiled. The base shed is the bottol horizontal force on the structure is colculated on the basis of the structules mass its fundamental period of vibration. the base shear is than distributed along the height of structure in terms of lateral forces.

) .	Answer/Solution	Marks
La maria propriational constitution	Step 1 -3 Determination of natural period. Ta = 0.09 h = 0.09 x (3.5 × 4) = 0.398 sec Td To	
AND RESPONSE OF THE PROPERTY O	Step 2 -> Determination of other important factors. 1) Sa = 2.5 3) [=1	
	2) 2 = 0.24 * 4) R=5	3
	Step 3 -> Determination of horizontal seismic co-ex	6 clent
	$A_{n} = \frac{2IS_{n}}{2IZg} = 0.06$	9
	Step4 -> Determination of design base sheal. VB = An W	
•	1) wit of slad = 125 KN 2) wit of beam = 107.8/10N 3) DL due to columns = 88.6 ICN.	
Ĭ.	4) D.L due to wall = 682.5 km. 5) L.L = 50 x 3.5 x 10x5 = 87.5 /W	
;	loads on 1st, 2rd, 23 ed flool = 1190.91cN. Load on Log flool = 618.36 kM.	9

•

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K – 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

VIII Semester (A & B SECTION) – III Internal Assessment Test EARTHQUAKE RESISTANT DESIGN OF STRUCTURES (10 CV834)

	ESSIGN OF STRUCTURES (I	U C V 834)
Ro	Oll No: USN: 4 A L C	
Da	te: 29/05/2017 Timings: 3.00 PM – 4.30 PM Note:	Max.Marks:50
	 Answer any 2 full questions from part A & 1 from Missing data, if any, may be suitably assumed and Answers should be specific and precise. Draw neat sketches wherever necessary. IS:1893-2002 (part-1) is permitted 	part B. I indicated.
1. a.	PART – A Explain the procedure for dynamic analysis with formulas.	12.0
b.	What is dynamic analysis?	10.0 marks 5 marks
2.a.	A 4 storey building storey height is 3m, dead load/ unit area of the floor consisting of floor slab, finishing etc. is 4 kN/m², weight of the partitions on the floor can be assumed to be 2 kN/m². The intensity of live load on each floor is 3 kN/m² & on the roof is 1.5 kN/m². The beam size are 300 mm X 600 mm. the column size are 300 mm X 600 mm. the soil below the foundation is hard & the building is located in Delhi. Determine the seismic force at the different floor level & draw load diagram & shear diagram. (fig. 2. a)	1 0.0 Marks
b.	What are reason for poor performance of masonry structure?	5 Marks
3.a	Write the procedure for analysis of masonry structure.	9.0 Marks
b.	What are the failures in masonry structure? Explain any 2 failure.	10 Marks

PART-B

Determine the design seismic forces for 3 storey building with floor height of 3.5 m using dynamic analysis & show the distribution of lateral force along the height of the building. the building is OMRF, located on hard rock in zone V, I=1.5. consider the free vibrating properties given.

 T_1 =0.0647 sec, T_2 =0.023 sec & T_3 =0.016 sec.

 W_1 =688 kN, W_2 =688 kN, W_3 = 640 kN.

Storey level	Mode 1	Mode 2	Mode 3
First floor	1	1	1
Second floor	0.802	-0.565	-2.243
Third floor	0.445	-1.246	1.8018

20 Marks

5.a Determine the lateral force on 2 storey unreinforced brick masonry building situated in zone IV for following data.

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K - 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF CIVIL ENGINEERING

1)Plan size= 18X8 m

2)storey height =3.0 m

3)weight of roof=2.5 kN/m²

4)weight of wall=5 kN/m²

5)L.L on roof=0

00

5.0

6)L.L of floor=1 kN/m²

7)response reduction factor=1.5

8) consider medium soil type & 7% damping.

14 Marks

b. What are the concepts for earthquake resistance masonry building as per codal 6 Marks provision?

ALVA'S INSTITUTE OF ENGINEERING AND TECHNOLOGY: MIJAR, MOODBIDRI

DEPARTMENT OF CIVIL ENGINEERING

Subject Title	Fally.	SCHEME	OF EVALUATIO	N
011	Ealthquotee Stluctur	Resistant	Design	P

Subject code: 10W &34

Q.N	O Structures Description of Assessment of Subject code: 1000 a	534
	CUSCIDION OF ANEWORE	Marks
'	Determination & important factors.	
1	2) Determination of	
i	2) Determination of seismic weight of the	
3	3) Developing mass [m] & stippless [k] mateix	
٠.	of the building using	
	of the building using system of mosses lumps of the flool levels. with each moss howing I deglee of fleedom.	1
	at the first built each moss howing	wy at
	1 deglee à fleedom.	1-
	mode shapes & using cm 5 (k)	
	made shapes & using 5m755)
	the design of the second	٠ <u>-</u>
	5) Determination of model moss MK, MK = [& u	i pind
	2, P. J. Bulleting - 4 M. Bomed budding	wip2
	6) Determination of model Collision	4
•	mode K. P - 8 E. With the faction factor	Pic DZ
	FIC - 2 (11: 4)2	7- 0
	Determination of model Participation foctor mode K. Pic = Exwider Ewider Ewider	a tr
	I calculate design bolces out each flood in ea	1 6.8 (
	mode gix = Anck) Pic Picus	
		17 (2) (2)
	8) Calculate stroley sheal folces in each mod	de
	Vik = E Pik	2
. 1	The state of the s	LAV,
	a) calculate sheaf forces due to all modes.	
	- Wisher The Hard State of the Head	Marie Services

ALVA'S INSTITUTE OF ENGINEERING AND TECHNOLOGY: MIJAR, MOODBIDRI

DEPARTMENT OF CIVIL ENGINEERING

Subject Title:

SCHEME OF EVALUATION

Subject code:

QNO Description of Anguera	ere constitution of the second
Description of Answers	Marks
Description of Answers Description of Answers Description of Answers Description of Answers Stoley, Fi = Vi - Vi+1	10
1.b) Dynamic analysis shall be performed to ob	
-tain design seismic force & its distribution	
to different fevers along the height of the	
awaing & to the valious lotelal load lesisti	
ing elements for the following buildings.	
) Regulal buildings -> those gleated than	*C V 1 1 1 1 1 1 1 1 1
40m in height in zone IV & those gleater	vertenan.
than gom in height in zone II SIII	2.5
2) Thegular buildings -> All framed buildings	
heighed than 12m in zones IV & I Lithese gles	_
- tel than 40 m height in zone II & III.	- ALVENIA
The dynamic analysis may be performed by	
response spectium method of time history	December
method, the design base shed up shall be	1010
compaled with a base shear VB calculated	
using fundamental time period To, when	
Ve is foll than NR all the Response of the	
- titus like membel folkes, disparement, stoley	1000
-titus like membel folces, displacement, stoley Sheal Shall be multiplied by latio VB/VB	5

•	Answer/Solution	Marks
4)	$\Gamma = 1$	
	R=3	
	2=0.24	
	Ta = 0.075 h 0.75	
	=0.075×12	
	= 0.4835 See	
3	50 7.068 = 2.07	2
.	Sa = 2-068 ≈ 2.07	
	Equipment load on each flool:	
	Seight welty de	
	Seismic weight	
	DN & Slob = 4(24×24)=2304 KN	
	2DC A Politions = 2x(24x24)=1152 M	
)	(a, 34 b, 6x C) x 25 x 2C = 35 / 574V	
	3) wt of column = 6.3x0.6x24) x25x n = 1080/W 4) wt of beams = (0.3x0.6x24) x25x n = 1080/W	
	4) wit of beams = lois to	
	Total wt & Steuctule=4873.5 kN.	
•	[0.24, 1, × 2.07], MA7/	
	V = [0.24 x 5 x 2.07] x 1947/	6

= 1612.1910

Marks Equivalent load on each floor = 4873.5+0.25x3 = 5305.5/N N53+/N Equivalent load on 100 = 2304+1080+337.5 = 3352 · 75 2 3553 /W : Total load = W= 19471 W 5306 x 32 x 16/2-1 [5306 x 32) + (5306 x 97) + (3555 x 402) Q = 65.23 W 93 = 587.119V 92=260.93100 94=698.9100 8 698.91 698.91 \$37.1 1612-17

١,	Answer/Solution	Marks
26	The moterial itself is blittle & its strength deg - ladation due to load repetition is severe.	
	2) Masorly has gleat weight becomes of thick was -115, lesulting in mole inestial tolkes.	
	3) No tensile & shear strength in mother.	9
	4) Implated mosarly bands.	
7	3) long slendelness.	5
<u>3</u> .0	Step - Detelmination of lateral load based on IS-1893-2002 (Part-I)	
	Step 2 - Distribution of lateral tolles on the boss of flexibility of diaphhagms.	
	step3 -> Detelmination of ligidity of sheal wall by considering the opening.	
Ŋ	Step 4 -> Determination of direct shear force & tolsional shear forces in shear walk.	
	Steps -> Determination of inclease in axial load in Piels due to over turning.	
	step6 > check the stability of fluxure wall for out of Plane folces.	5
		,

».	Answer/Solution	Marks
36	The type of constluction, site of constluction, structural typology of mosney building value-8 in different regions but the domage cause -d by sexmic activities may be identified	
	2) Diaphogm bille & pounding.	
4	Diophlagm failule The failule of the diaph - lagm is a hale phenomenon in the event of Seismic motion. Damage to dio-phygm nevel, in - polts its glavity load callying co-pacity. lack of tension anchoring phoduces a non-bending)
3	contilevel action at the book of the wall itself lesulting from the push of diaphlagm ago not the wall. The inplane rotation of the diaphlagm ends & the absence of a good shed thankfel blw diaphlagm & leaction walls account for the damage at corner of the	Ý
÷	walls occount for the dament at controlled wall. This problem is very tale in ancholis buildings.	8

) .	Answer/Solution	Marks
	$P_{1} = \frac{1497.936}{1218.765} = 1.229$ $-599.086 = 0.312$	() Y .
	1920.05	167 1700, No.10.
	$P_3 = \frac{333.70}{6347.29} = 0.053$	8
	Step 3 -> Model contlibution.	1
	$M = 2.08.35$ $M_1 = 90\%$	VI .
	$\frac{m^2}{13^2} = 9.13^2$	
	$\frac{M_s}{M} = 0.86\%$. (20.01 = 280.00)	12
	Step 4 -> loteral forces. Pik = Ank Dik Pk Wi	3
	9,1= 139.57 KW	12
	94 = 120.33 kg/	

•

2.	Answer/Solution	Marks
	931 = 66.76 KW 912 = -24.1619V	Property of the Section of the Secti
A THE PROPERTY OF THE PROPERTY	422 = 14.41 M 432 = 32.3619V	
	413 = 3.8 KV 923 = -9.18 KV.	16
D	Shed force Easted many 6 1/1	16
	$V_{11} = 139.57 \text{IW}$ $V_{12} = -24.16 \text{IW}$ $V_{21} = 259.9 \text{IW}$ $V_{22} = -9.74 \text{IW}$	
	$V_{31} = 326.67 \text{ PW}$ $V_{32} = 22.62 \text{ PW}$ $V_{13} = 3.8 \text{ PW}$	
رد	V22 = -5.74 KN V32 = -12.62 KN.	
	Combined Shed Vi = 141.719V	
•	V2 = 260.14 KW V3 = 327.719W	20

•

٥.	Answer/Solution	Marks
50)	T= 0.09.h	υP.
	$= \frac{0.09 \times 6}{\sqrt{18}} = 0.127 \text{ Sec}$	
	Flom 10 2, So = 2.5 to 5 1. domping	ah sh
•	For 7%, damping, from table-3	we.
	$S_{0} = 0.9 \times 2.5$ $= 2.25$ $A_{h} = 2 \cdot S_{0}$ $= 2.29$	1)2 1) 2)
	$= \frac{0.16 \times 1 \times 2.25}{2 \times 1.5}$	New Year
	Seismic weight Seismic weight of 1st flood = [wt of look + wt	3
	Seismic weight of 1st flood = [wt of loop + wt wall + 4.4] wall + 4.4] wall + 4.4]	2

•

ALVA'S INSTITUTE OF ENGINEERING AND TECHNOLOGY: MIJAR, MOODBIDRI

DEPARTMENT OF CIVIL ENGINEERING

SCHEME OF EVALUATION

Subject Title

Subject code:

ONO	Description of Answers	Marks
	ut & wall = (18 x3x5x2) + (8x3x5x2)	
	= 780 KN.	
•	LL = 35 X1 X18X8 = 36 KM.	6
4	Seismic wt of look slob = [wt of look + wt of wall+4]	7
# Older And a	wt of loop = 18 × 8 × 25	ט
* * * * * * * * * * * * * * * * * * * *	WH & WOLK = 780/2 = 390/W	
A 1 (44)	L.L=D of digenomially had blook god	8
Martine Martine Co. 1	Total weight of, 1st flool = 780 + 360 + 360 + 360 = 1176 100	
A Chi and the second se	Total weight of 100 = 360 + 390 = 750 KW.	
Accepted with a section of the contract of the	. Total seismic wt of building = 1926 by	
The state of the s	VB=6.12×1926	
	= 23.12 IW	16

DEPARTMENT OF CIVIL ENGINEERING

SCHEME OF EVALUATION

Subject Title:

Subject code:

Q.NO	Description of Answers	Marks
	lateral force at 1st floor,	
1	91 = 231.12 [1176 x32 + (750 x62)	
.• <u>.</u>	Q = 65.08 FN	12
	lotelal folce at log	dus '
	92 = 23.12 (176×32)+(750×62)	
	92= 166.03 KW	14
- !.	Building should be light in weight, Palti- cularly 200 & uppel stalies	
	2) Avoid close placimity, use seperation 3) use seperated stailcose, otherwise enclose that within light works. If not possible use	Lator
	Sliding joint. Dement-Sond (1:6) & lime-Sond (1:3) for good overlity Stone mosonry.	: i
	5) min world thickness of 230 mm in single startey & thickness of 350 mm in bottom stories.	
	Plate of as a vertical steep.	6

AIET		Lesson Plan	& Execution		Format No. Issue No. Rev. No.	ACD 08 01 00
	f the faculty		Nikhil.	N		
Semeste	er and Sect	ion	8th Sen	n ASB	Section	
Date of (Commence	ement	13-2-			
Last Wor	rking Day o	of the Semester	2-6-3			
Source N	Materials Li	st	20			
5	mayus	ce Resistant designate designate lesistant de exe l'esistant de exe l'esistant de exe l'engineesing 193-2002.	in ig struc n ig struc sign - Ar domoge	tules - Pa tules - S il Chapla	onkaj p Ic. Dugo ent -S	gasur al.
Subject N	Name Pa	15-2002. Athornola Resid	Start De	lign of Ste	includes - Execution	-10cv &
Period	Date	Topics to be covered	Source Material needed	Topics Cove	red Date	Source Material Referred
1	13/2/17	motion, Enginee g sexmology.	nd I Rin I 2 3	CoVele	ol phat	1 2 3
2	RINI	theoly of Plate tectonics,	2 3	Corlelec	4 15/24	1 2 3
2	14	Seismic works magnitude 3 Intensity of 6 -thquake.		cortelle	1/2/2	1 2 3
4	18/2/17	local site eff.	2 3	coveled	18/2/	1 2 3

		Plan		Execu	ution	
Period	Date	Topics to be covered	Source Material needed	Topics Covered	Date	Source Material Referred
5	20/2/17	Seismic zoning map of India	2 3	Coveled	क्रीया	1 2 3
	27/2/17	Pilphlems	1 2 3	Correled	1/3/17	1 2 3
	23/2/17	Seismic design Palameters.	2 3 4	coveled	3/3/17	1 2 3
	25/2/17	Types Q earthque	2 3 4	coveled	413/17	1 2 3
9	16917	Respons spectfa	2 3 4	coveled	6/3/17	1 2 3
10	3/3/17	Design Specthum	2 3 4	Covered	6/3/	2 3 4
) (4/3/17	Ploblems	2 3 4	covered	1/3/1	2 3 4
12	6/3/17	Phoblems.	2 3 4	covered	2/3/17	2
13	8/3/17	Stluctural model	3 4	covered	(र्व)	3
14	19317		4	Coveled	8/3/0	3 4
16	1/3/17		4.	covered	243/1	3
16	13/3/17		3 4	Coveled	22/3/17	3
ħ	(5/3/17	Retropitting met	3 4	Coveled	31/3/	3

		Plan		Exe	cution	
Period	Date	Topics to be covered	Source Material needed	Topics Covered	Date	Source Material Referred
18	Pa[3]	Retlofitting me- thods.	- 3	Coveled	114117	3
	18/3/17	Effect of struct	1 2 3	Coveled	SIAIN	3 4
	20/3/17	Westical illegu		covered	10/4/17	2 3
	22/3/17	Aon configurati	1 2 3	covered	15/4/17	3
		Seismo lesistant building architecture.	1 2 3	covered	17/4/17	2 3
	12/17	lateral load resistant system	1 2 3	covered	19141 ⁿ	2 3
	417	Building choloct existics.	1 2 3	covered	19/4/17	2
	117	Scismic design Philosophy, detosm ination of design	3 4 5	careled	20/AM	2
	E	a fosce procedure	3 4 5	caused	2/4/7	2
		Plablems	3 4 5	called	22/4/17	2, 3
		ploblems	3.45	wered	24/4/17	3
7		ploblems	3 45	toVeled	26/4/17	2 3
151	17 4	phoblems.	3 4 5	covered	27/4/17	

				Execut	tion		
Period	Date	Plan Topics to be covered	Source Material needed	Topics Covered	Date	Source Material Referred	
3-1	19/4/17	Phoblems	3 4 5	Coveled	2/5/17	2 3	
32	2/14/17	Phoblems.	3 4 5	coveled	19/2/17	3	
33		-dule to Seisnic onalysis of RC buil	3 4 5	covered	15/5/10	2 3	
34	2014/17	Equivalent State	3 45	coveled	17/5/17	2 3	100
35	26/4/17	plablems	3 4 5	correled	H. IV	3	N. A.
3,6	3/5/17	Plobkms	3 4 5	correled	reldi	3 4 5	
37	8/5/17	ploblems	3 4 5	corpled	18/5/17	3	
38	10/5/17	0.11	3 4 5	coreled	27/3/2	3 45	
39	12/5/17	Plablems.	3 4 5	coveled	22/5/	n 3 4 5	
40	ISISID	Earthquake lesist	3 4 5	correled	zatsl	3 4	
41	7/5/17	load combination	3	cortaled	29/51	3	
42	1415117	phoblems	3 4 5	correled	25/5	3	
43	20/5/17	phoblems	3 4 5	covered	29/3	3	

		Plan		Exe	cution	
Period	Date	Topics to be covered	Source Material needed	Topics Covered	Date	Source Materia Referred
44	26/5/17	Phoblems	3 4 5	Covered	3/5/17	3 4
45	215/17	Problems	3 4 5	coveled	3/2/10	3 4
46	291917	ploblems	3 4 5	I. A	1/6/17	3 4
47	palsin	Falthquote less tort design of me -sonly building - elostic plofesties		aveled	1/6/17	4 5
48	MS/17.	loteral load analys -is, Design Place dull of masonry building.	3 4 5	coveled	16/19	4 5
48	3/15/17	Plablems	3 4 5	correled	1/8/10	3 5
50)	31/5/17	Ploblems	3 4 5	cauled	76/13	3
	PIIZIU	Ploblems	3 4 5	coveled	76/17	3 5
	16/17	Ploblems.	3 4 5	correlled	26/13	3 5
52	156	10 h		1610019	27	
				the state of the s		

4	4		
3	2		
3	3		
Ful	1 10	50./ .	
No. of Studer	nts AP	No. of Students Passed	% of Result
	3 Ful		3 3 Full 100%

Faculty in Charge

Signature of Principal (& Remarks if any)

HOD's Signature

ALVA'S INSTITUTE OF ENGINEERING

MIJAR.

ATTENDANCE CUM INTERNAL

AND TECHNOLOGY

MOODBIDRI - 574 225

subject : ERDS

class : 8th Sem A&B section	ATTENDANCE CUM INTERNAL
Subject : ERDS	
No. of Classes held: 52	13/13/13/13/13/13/13/13/13/13/13/13/13/1
Date / Month	3/13/13/13/3

Date / M Sil. U.S.N. Name 1 191320001 Abhilash.	onth	13/2	1/3/2	118	12	80	13	-5	-		1000	CONT.	1000	3	3	
10.		1		1000	1000	-	6	7	8	9	10	11	12	13		5
			2	3	4	5	-	-	-	-	a	10	11	0	-	15 Mir
417/4/20		1	2	3	4	5	A	6	7	8				19	A	Fot
2 majavois Ambili M.P	100	1	1	3	A	4	10000	6	7	8		10	11	12	13	19
3 JALIZEWOZE Balanagowa. B	3	1	2	3	A	10000	5	6	7	8	9	10	11	1.7	13	14
4 hALISURGE HOS. KISH. S.P		1	2	3	4	A	5	6	7	8	7	10	0	11		
5 49(13cvoja Hazehith. A.S		1	A	2	3	4	5	6	A	A	0	8			A	A
6 AAyavasa Manjunatha.V		1	2	3	4	5	A	6 MC	ME	8 Mc	me	me	10	II mc	12	13
7 gp/30vobs Planil Kumal.		1	2	3	4	A	5	MC A	+	Ð	H	1	F	Sec. of		7
8 halizurak Sachin Sindagel	i	1	2	3	4	5	6	7	8	9	TO SHOW THE PARTY OF	11	1	150	A	4
galizwoss songmesh		1	2	3	4	5	6	7	8	9	10		12		14	5
9 April Santosh Kamble		1	2	3	4	5	6	7	8	9		11	12	13	14	15
1 AALISOVA Salflagoli		1	2	3	4	A	5	6	7	8	9	10	11	12	13	14
3 AALIBOURS Shash; Kanth		1	2	3	4	5	6	7	8	9		11				
3 Aplizaron sleela Pillai		1	2	3	4	5	6	7	8	9		11				
4 AALBOURS Thorchon Satist	K	1	2	3	A	4	5	6	7	8	9	10				14
5 GALISCULOT Vijaya Reddy		1	2	3	4	5	6	7	8	A	9	10	11	12	13	19
6 AALISVIIS Hemanth Kumal.	K.R	1	2	3	A	4	5	6	7	8	9	10	1)	12	13	A
7 ANIBUILLE Jithin. P		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
8 HALBONIA Shehor K		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
9 haliseves Shins T Wilson		1	2	3	A	4	5	6	7	8	9	10	10	12	13	14
o politicas c. Manjunata		1	2	3	4	5	6	7	8	9	10	n	12	13	14	15
1 pourros Gusubalavalaj 1	n	1	2	3	A.	4	5	6	7	8	9	10	V	12	13	14
2 Jahrung Kalakalehunday	ya	1	2	3	4	5	6	7	8	9	10	Ħ	12	13	14	15
3 HALMUNG Kilan M.L	10	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Aphacha Lakkappa		1	2	3	4	5	6	7	A	A	8	9	10	11	12	13
APLIACUAR LONITH V		1	2	fi	3	4	5	6	7	8	9	10		12	1000	1000
HALKONII Mahendla s Puja	li	1	A	2	3	4	5	6	7	8	9	10		12	100	
Aply(1417 Man; whoth Souda	2	1	2	3	A	4	5	6	7	8	9	10	1)	12	1150	1000
palyery Manjument Poncros	mu	1	2	3	4	A	5	6	7	8	9	1000	2000	12	13	1000
AAUGUAN Plaveen Kumos. B.	M	1	2	SCHOOL ST	300		5	6	7	8	9	10	11	12	0.00000	100
HALMOUANG ROW, Kilans		1	SESSESS OF		4	5	6	7	8	9	10	11		13		10000
taff Initials	1	act .	COLUMN S		REGULERRY O	CONTRACTOR OF	SHOOTS !	1	at l	1000000	· MA		100500	/		1

2	131	.1	15	113	15	- 17	419	419	1-2	, 21	12	424	14	12
16	17	18	3 19	20	21	22	2 23	3 24	1 25	26	27	28	29	30
NX.	-	10	1	10	M	M	414	ct	7 10	10	200	2/	30	2
性	12	- 13	14	2 14	A	20	120	14	72	2	20	121	2	700
15	116	117	10	10	4	2	4	22	2	2	20	26	21	20
												27		
14	0	10	11	A	10	12	10	11	MC	mo	inc	29 MC	MC	mc mc
												25 26		
rein.				1			122			100	100	26		0000
460		100	100	1350	1		1000	1	1	35538	10000	25	10000	1983
		110	The same			1000	A COUNTY	193.00	1970	100000	177	25	STATE OF	
-		100000		100000		100000	1000				1000	25		200
100					A Transfer	1000	1000		STREET, STREET	1000	200-000	22	CONTRACTOR OF THE PARTY OF THE	
100		100000	1	1	100	WO.	1000	1	10000	1000	10000	26	355000	1000
199		1000		1000		1	1000		100		19.00	200	1000	1
1001		1		1000	2000	TO TO	1	10000		27	-	26		2000
168		83000	10.5	100		4.6	900	1000	1000	1000	100	27	250	1000
100	2000	1000	1000	125-115	1000	1100	253	17700	200	-		26	1000	1
						1000		2500	1000		1000	25	500000	
1801				0.000	100000			10000	235-0	-		24	CONTROL OF	ALCOHOL: U
100	10000			100	1000				10000	15255	1000	25	100	13000
22.1	100			5303	2000	10 70			10000	3353	25000	24	19000	10000
1011	6	0000		13200	200	2000			10000	1000		A	2000	200
53H	3333	988			1000	100	800	1000	333	3350	100	24	700	9339
168	200	100			10000	2000	-		2000	1000	217.0	25	2000	1
Jan 19	200	1000	1000	1000	262		200	1000	100		15000	26	1000	2533
20 8	200	1000000		000000	2000000			2500000	2000			25		1000
277 19	3390	20000	Steamer !	1000000		555		10000	100000	THE REAL PROPERTY.	10000	24	100 E	9000000 FF
8030	0000	10000	1000	20000	22000			DANSE	1000	DOM:	2015/2017	27	-	-
ALC:	00000	100000	100000	100000	2000		70000	10000	100		-	2)	SERVICE 5	0000000111
3	Set .	My I	M	曲	phy	M	NO	NH	god	Part .	per	ph	M	nd
		13									-	K	1:	N
1	1	1	1.1										7	10

ttender							
nducti	ed	No. of Class	% of Atten-	Internal	Assessr	nent (25)	age
48 6	0	Attended		1	1	111	Average
		47	90	AB	23	19	21
		49	94	23	21	AB	22
		49	85	15	25	25	25
		51	98	18	19	19	19
		46	88	14	20	185	19
		48	92	20	25	#8	23
	-	50	96	17	AB	20	19
		49	94	5	18	48	18
		49	94	25	24	AB	25
		47	90	18	19	AB	19
-		48	92	17	20	20	20
		48	92,	11	18	23	. 21
		45	92	17	20	17	19
		45	86	11	AB	20	16
		46	88	16	19	24	22
		48	92	21	23	AB	22
		4)	go	9	16	20	18
		47	90	18	22	25	24
		48	92	20	22	22	22
		47	92	1	15	21	18
		47	92	11	21	AB	16
		47	92	3	21	18	20
		4)	92	1)	0	23	17
		48	92	8	20	20	20
		48	92	13	20	23	22
		49	94	21	24	118	23
		97	92	6	19	19	19
		46	88	15	20	20	20
		45	86	7	21	22	22
		49	94	11	22	16	19
	The same			HAL	NAT	MA	the
			,	do	41	1	p

tudents

ALVA'S INSTITUTE OF ENGINEERING MIJAR AND TECHNOLOGY ATTENDANCE CUM INTERNAL 1000BIDRI - 574 225 class 8th sem A & B Sec subject : ERDS Sil U.S.N. Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 No. of Classes held: \$\frac{1}{5}\frac{1}{5}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}\frac{1}\frac{1}{1}\frac\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\frac{1}\ Subject : ERDS inducted No. of % of Internal Assessment (25) Class Atten-48 60 Attended dance 46 18 20 16 49 94 20 41 79 88 16 22 AB 47 90 Thomas Vinay K. Y 48 92 17 24 748 12 13 14 23 24 25 26 28 29 Staff Initials

AIE	T		ASSIGNMENTS			Format Issue N Rev. No	0.	ACD 10 01 00
-		Civil Engineer	y, ra		Acader	nic Year ter	20	MASS.
_		Title	Books / Journals / Magazines referred	Anno	ate of uncement	Submission		Signature of the faculty
SI.No.		50/55/0		20/3	רונ	29/3/17	_	Waluan
1	Rest	ance specthing				29 3 D		1
				1/4		8/4/1	2_	N. Near
2	Sel	smic co-eff						1 had
	- C	ent nother						alle
								4
	_							
				+				
				+			N	-
				_		-		
				+		-		-
						-		-
	-							
	-							
	-			_				
4	-			_				
	-					+		
				+		-		-
								-
-/-								
	1					-		
4						-	_	1
-						-		+
	1							

AIET		INTERNAL EXAM RESULT ANALYSIS						Format No. Issue No. Rev. No.		No.	ACD 12 01 00	
Department	avil	vil Engineering						Semeste	er	811	Sem As,	
		V O							Subject Code		OCV834	
Total No. of Students	37							Academi	c Year	20		
Test	Date	Number of Students Attended 0-14 15-20 21-25			Signature		Remarks					
т,	24/3/17	36	0-14	15-20	3	Faculty N. Nau	NO HOD		1101	naiks		
T ₂	27/4/17	35	1	18		NAME	Th					
Т ₃	29/5/n	28	0	16	12	MARK	b					
T ₄						141.4	7				-	
T _s												

Signature of Staff in - charge

MUMB Lia 1007

HOD's Signature

Eighth Semester B.E. Degree Examination, June/July 2013 Earthquake Resistant Design of Structures

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part.
2. Use of IS-1893, IS-13920 and SP-16 are permitted.

PART - A

- a. Differentiate between magnitude and intensity of earthquake. Explain briefly first five (10 Marks) intensities of earthquakes.
 - b. Explain seismic zones of India, their characteristics and basis on which the seismic zoning is done.
 (10 Marks)
- 2 a. Explain principal ground motion (strong motion) characteristics. (10 Marks)
 - b. Differentiate between response history and response spectrum. Explain with diagrams. On what factors, the response acceleration (s₃/g) depends. (10 Marks)
- 3 a. What are the requirements of building structures for good earthquake resistance? (10 Marks)
 - b. Explain response control concepts (damping and base isolation) in earthquake resistant design of building structures. (10 Marks)
- 4 a. Explain the plan irregularity (configuration) problems when does torsional irregularity (10 Marks)
 - b. For the moment resistant frames idealized as shear buildings, investigate the building structures shown in Fig.Q.4(b)(i) and (ii) has soft storey or extreme soft storey. MI of each column is indicated.

 (10 Marks)

Fig.Q.4(b)

PART - B

- What are the seismic and structural parameters influencing the horizontal seismic (10 Marks) acceleration coefficient, An. Explain in detail.
 - For the residential RCC (special moment resisting frame, SMRF) building shown in Fig.Q.5(b). Compute the seismic forces by equivalent static procedure. Building is founded on hard soil (rock) and situated in zone IV. Given: $W_1 = 294.3$ kN, $W_2 = 1863.9$ kN, $W_3 = 1079.1 \text{ kN}.$

- What are the different load combinations to be accounted for in the seismic design of RC structures, as per IS-1893?
 - b. For the residential, RCC (special moment resisting frame, SMRF) building shown in Fig.Q.6(b). Compute the seismic forces by dynamic analysis (response spectrum) procedure. The building is founded on hard soil (rock) and situated in zone IV. Given: the free vibration results. The frequencies $W_1 = 10.035$ rad/s, $W_2 = 40.347$ rad/s and $W_3 = 64.148$ rad/s.

Modes: $\{\phi\}_1 = \{1.00 \ 0.970 \ 0.760\}$ $\{\phi\}_2 = \{1.00 \quad 0.511 \quad -1.311\}$ $\{\phi\}_3 = \{1.00 -0.235 \ 0.075\}$

(15 Marks)

- Explain the importance of confinement of concrete for ductility, What are the provision for special confining reinforcement in Indian standard? (10 Marks)
 - b. Design and detail the beam conforming to duetile detailing provisions of IS-13920 for flexure only (design for shear not required).

The max forces in beam AB are given below.

Maximum bending moment, at A = (+ 280 kNm and -369 kNm)

Maximum bending moment, at B = (+ 236 kNm and -371 kNm)

Maximum bending moment at centre = 65 kNm.

(10 Marks) Use M20, Fe415,

- What is slenderness of the masonry wall? What are the measures to improve the slenderness of masonry walls? (10 Marks)
 - What are the different failure modes of masonry structures? Explain with sketches.

(10 Marks)

5

Eighth Semester B.E. Degree Examination, June/July 2015 Earthquake Resistant Design of Structures

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part.
2. Use of 1S1893-2002 permitted.

PART - A

a. Explain the earth and its interior. (06 Marks)

b. What is the plate tectonics? What are the major tectonic plates on the earth's surface?

c. Compare the seismic waves in terms of particle motion, typical velocity and other characteristics. (08 Marks)

2 a. Explain the different earthquake ground motion characteristics. (06 Marks)

b. What is response spectra? Explain design spectrum and its different regions. (06 Marks)

c. Explain the construction procedure of elastic and in elastic design spectrum. (08 Marks)

3 a. Explain the different structural modellings. (06 Marks)
b. Explain the code based methods for seismic design (06 Marks)

b. Explain the code-based methods for seismic design.
c. What are the earthquake protective systems? Explain any one control device in detail.

(08 Marks)

4 a. Explain the different vertical irregularities. (06 Marks)

b. What are the major aspects involved in seismo resistant building constructions and explain lateral load resisting systems. (06 Marks)

c. Explain building configuration problems and solutions. (08 Marks)

PART - B

A four story reinforced concrete for hospital building is situated in Zone-IV. The heights between the floors is 3 m and total height of building is 12 m. The total lumped load on roof floor is 2500 kN and total lumped loads on First, Second and Third floor is 3000 kN each. The soil below the foundation is to be hard rock. Determine the total base shear and horizontal lateral forces on each floors as per IS: 1893-2002 codal provisions. (20 Marks)

For the 3-storey RCC (special moment resisting frame with importance factor = 1) building frame founded on soft soil and situated in zone – V. Determine the seismic forces by dynamic analysis procedure for the following data:

 ω_3 (roof) = 392kN, ω_2 = 784kN, ω_1 = 1568kN

The mode shapes and natural periods are,

(20 Marks)

Natural period	Mode-1	Mode-2	Mode-3			
(Second)	0.883	0.404	0.302			
(Geeena)	Mode shapes					
Roof	1	1.0	1.00			
Second floor	0.791	0.00	- 0.791			
First floor	0.250	-1.00	0.250			

What are the different load combinations as per 1893-2002 to be used for seismic analysis of (05 Marks) RCC-buildings.

101

What are the steps involved in analysis and design of sub-frames?

(05 Marks)

The plan of a simple one-storeyed building as shown in Fig. Q7 (c). All the columns have the same dimensions and hence the same cross-sectional area. Obtain the centre of stiffness. (10 Marks)

Explain the elastic properties of masonary. 8

Determine the lateral forces on a two-storey unreinforced brick masonary buildings situated in zone-III for the following data:

Plan size = $18m \times 8m$

Total height of building = 6.2 m

Storey height = 3.1 m

Weight of roof = 2.5 kN/m^2

Weight of wall = 5 kN/m^2

Live load on roof = 0

Live load on floor = 1 kN/m^2

Response reduction factor = 1.5

Consider, medium soil type, Thy confidential docum

(14 Marks)

Eighth Semester B.E. Degree Examination, June 1919 201 Earthquake Resistant Design of Structures

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, selecting atleast TWO questions from each part.
2. Use of 1893 – 2002 is permitted.

PART - A

a. Explain the seismic zoning of India and the basis on which the seismic zoning is done.

(10 Marks)

b. Explain the difference between magnitude and intensity of an earthquake.

(10 Marks)

- 2 a. Explain the principal ground motion (strong motion) characteristics. (10 Marks)
 - b. Differentiate between response history and response spectrum. Explain with diagrams what factors, the response acceleration $\left(\frac{\text{Sa}}{\text{depends}}\right)$ depends. (10 Marks)
- a. What are the requirements of building structures for good earthquake resistance? (10 Marks)
 b. What are the different seismic etrofitting techniques? Explain in detail. (10 Marks)
- 4 a. Explain the vertical irregularity (configuration) problems. When does torsional irregularity occurs? (10 Marks)
 - b. A building having a non -uniform distribution of mass is shown in Fig. Q4(b). Locate its centre of mass. (05 Marks)

Fig. Q4(b)

c. For the moment resisting frames idealized as shear buildings. Investigate the building structures shown in Fig Q4(c) has soft storey or extreme soft storey, MI of each column is indicated. (05 Marks)

PART - B

a. Summarize the philosophy of seismic design.

(05 Marks)

b. The plan and elevation of a three – storey RCC school building is shown in Fig. Q5(b). The building is located in seismic zone V. The type of soil encountered is medium stiff and is proposed to design the building with a special moment resisting frame. The intensity of dead load is 10 kN/m² and the floors are to cater with an imposed load of 3 kN/m². Determine the design seismic loads on the structure by static analysis. Refer Fig. 5(b).

For the RCC (SMRF, with importance factor = 1) building founded on soft soil and situated in zone V. Determine the seismic forces by dynamic analysis procedure for the following free vibration results of the building having weight of roof w₃ = 392 kN, 2nd floor w₂ = 784 kN, and first floor w₁ = 1568 kN.

Natural	Mode - 1	Mode - 2	Mode - 3	
Period (s)	0.883	0.404	0.302	
Roof	1.000	1.000	1.000	
Second floor	0.791	0.000	-0.791	
First floor	0.250	-1.000	0.250	

(20 Marks)

- a. What are the different load combinations as per IS 1893 2002 to be used for seismic analysis of RCC buildings? (08 Marks)
 - b. What are the ductile detailing provisions for beams (for flexure and shear). Explain with neat sketches.

 (12 Marks)
- 8 a. Explain various modes of failure of masonry buildings with neat sketches. (10 Marks)
 b. What are the recommendations for improving the seismic resistance of masonry structures?

Explain. (10 Marks)