Electric and Hybrid Vehicle Technology		Semester	3
Course Code	BME306A	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	3
Examination type (SEE)	Theory		

Course objectives:

- To understand the models, describe hybrid vehicles and their performance.
- To understand the different possible ways of energy storage.
- To understand the different strategies related to hybrid vehicle operation & energy management.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- Adopt different types of teaching methods to develop the outcomes through PowerPoint presentations and Videodemonstrations or Simulations.
- Chalk and Talk method for Problem Solving.
- Adopt flipped classroom teaching method.
- Adopt collaborative (Group Learning) learning in the class.
- Adopt Problem Based Learning (PBL), which fosters students' analytical skills and develops thinking skills such as evaluating, generalizing, and analyzing information.

Module-1

Introduction to Electric Vehicle (EV) & Hybrid Vehicle(HV):

A brief history of Electric and Hybrid vehicles, basic architecture of hybrid drive train, vehicle motion and the dynamic equations for the vehicle, types of HV and EV, advantages over conventional vehicles, limitations of EV and HV, impact on environment of EV and HV technology, disposal of battery, cell and hazardous material and their impact on environment.

Module-2

Power Management and Energy Sources of EV and HV:

Power and Energy management strategies and its general architecture of EV and HV, various battery sources, energy storage, battery based energy storage, Battery Management Systems (BMS), fuel cells, their characteristics, Super capacitor based energy storage, flywheel, hybridization of various energy storage devices, Selection of the energy storage technology.

Module-3

DC and AC Machines & Drives in EV & HV:

Various types of motors, selection and size of motors, Induction motor drives and control characteristics, Permanent magnet motor drives and characteristics, Brushed & Brushless DC motor drive and characteristics, switched reluctance motors and characteristics, IPM motor drives and characteristics, mechanical and electrical connections of motors.

Module-4

Components & Design Considerations of EV & HV:

Design parameters of batteries, ultra-capacitors and fuel cells, aerodynamic considerations, calculation of the rolling resistance and the grade resistance, calculation of the acceleration force, total tractive effort, torque required on the drive wheel, transmission efficiency, consideration of vehicle mass.

Dept. Of Mechanical Engineering Alva's Institute of Engg. & Technology Mijar, MOODBIDRI - 574 225

Module-5

Electric and Hybrid Vehicles charging architecture:

Introduction to smart charging: Grid to vehicle and vehicle to grid, smart metering and ancillary services, preliminary discussion on vehicle to vehicle and vehicle to personal communication systems, introduction to battery charging stations and its installation and commissioning, preliminary discussion on estimation on station capacity and associated technical issues, different connectors.

Course outcome (Course Skill Set)

At the end of this course, students will demonstrate the ability to

- Understand the architecture and vehicle dynamics of electric and hybrid vehicles
- 2. Analyze the power management systems for electric and hybrid vehicles
- 3. Understand different motor control strategies for electric and hybrid vehicles
- 4. Analyze various components of electric and hybrid vehicles with environment concern.
- 5. Understand the domain related grid interconnections of electric and hybrid vehicle.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.
- The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered
- Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shal! be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.
- For the course, CIE marks will be based on a scaled-down sum of two tests and other methods
 of assessment.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours).

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.
- 4. Marks scored shall be proportionally reduced to 50 marks.

Suggested Learning Resources:

Text Books

- 1. Iqbal Hussain, "Electric and Hybrid Vehicles Design Fundamentals", 1st Edition, CRC Press, 2003.
- James Larminie, John Lowry "Electric Vehicle Technology Explained", 1st Edition, John Wiley and Sons, 2003.

- Chris Mi, M. Abul Masrur, David Wenzhong Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", Wiley publication, 2011.
- 4. Allen Fuhs, "Hybrid Vehicles and the future of personal transportation", CRC Press, 2009.

Web links and Video Lectures (e-Resources):

- Web course on "Introduction to Hybrid and Electric Vehicles" by Dr. Praveenkumar and Prof. S Majhi, IIT Guwahati available on NPTEL at https://nptel.ac.in/courses/108/103/108103009/
- Video Course on "Electric Vehicles" by Prof. Amitkumar Jain, IIT Delhi available on NPTEL at https://nptel.ac.in/courses/108/102/108102121/

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

HO.D.

Dept. Of Mechanical Engineering Alva's Institute of Engy. & Technology Mijar, MOODBIDRI - 574 225