VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI

B.E: Electronics & Communication Engineering / B.E: Electronics & Telecommunication Engineering NEP, Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2021 – 22)

V Semester

Communication Lab II				
Course Code	21ECL55	CIE Marks	50	
Teaching Hours/Week (L: T: P: S)	0:0:2:0	SEE Marks	50	
Credits	1	Exam Hours	3	

Course objectives:

This laboratory course enables students to

- Design and demonstrate communication circuits for different digital modulation techniques.
- To simulate Source coding Algorithms using C/C++/ MATLAB code.
- To simulate Error correcting and detecting codes using C/C++/ MATLAB code.
- Simulate the networking concepts and protocols using C/C++/ Network simulation tool.
- Understand entropies and mutual information of different communication channels.

• U	nderstand entropies and mutual information of different communication channels.		
Sl.No.	Experiments		
	Implement the following using discrete components		
1	FSK generation and detection		
2	PSK generation and detection		
3	DPSK Transmitter and receiver		
4	QPSK Transmitter and Receiver		
In	uplement the following in C/C++/MATLAB/Scilab/Python or any other Suitable software		
5	Write a program to encode binary data using Huffman code and decode it.		
6	Write a program to encode binary data using a (7,4) Hamming code and decode it.		
7	Write a program to encode binary data using a ((3,1,2)/suitably designed) Convolution code and decode it.		
8	For a given data, use CRC-CCITT polynomial to obtain the CRC code. Verify the program for the cases a) Without error b) With error		
	Implement the following algorithms in C/C++/MATLAB/Network simulator		
9	Write a program for congestion control using leaky bucket algorithm.		
10	Write a program for distance vector algorithm to find suitable path for transmission.		
11	Write a program for flow control using sliding window protocols.		
12	Configure a simple network (Bus/star) topology using simulation software OR		
	Configure a simple network (Ring/Mesh) topology using simulation software.		
	Demonstration Experiments (For CIE)		
13	Configure and simulate simple Wireless Local Area network.		
14	Simulate the BER performance of (2, 1, 3) binary convolutional code with generator sequence $g(1) = (1\ 0\ 1\ 1)$ and $g(2) = (1\ 1\ 1\ 1)$ on AWGN channel. Use QPSK modulation scheme. Channel decoding is to be performed through Viterbi decoding. Plot the bit error rate versus SNR (dB), i.e. $P_{e,b}$ versus E_b/N_0 . Consider binary input vector of size 3 lakh bits. Also find the coding gain.		
15	Simulate the BER performance of (7, 4) Hamming code on AWGN channel. Use QPSK modulation		

scheme. Channel decoding is to be performed through maximum-likelihood decoding. Plot the bit error rate versus SNR (dB), i.e. $P_{e,b}$ versus E_b/N_0 . Consider binary input vector of size 5 lakh bits. Use the following parity check matrix for the (7,4) Hamming code. Also find the coding gain.

$$H = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

Simulate the BER performance of rate 1/3 Turbo code. Turbo encoder uses two recursive systematic encoders with $G(D) = \left[1, \frac{1+D^4}{1+D+D^2+D^3+D^4}\right]$ and pseudo-random interleaver. Use QPSK modulation scheme. Channel decoding is to be performed through maximum a-posteriori (MAP) decoding algorithm. Plot the bit error rate versus SNR (dB), i.e. $P_{e,b}$ versus E_b/N_0 . Consider binary input vector of size of around 3 lakh bits and the block length as 10384 bits. Also find the coding gain.

Course outcomes (Course Skill Set):

On the completion of this laboratory course, the students will be able to:

- Design and test the digital modulation circuits and display the waveforms.
- 2. To Implement the source coding algorithm using C/C++/ MATLAB code.
- 3. To Implement the Error Control coding algorithms using C/C++/ MATLAB code.
- Illustrate the operations of networking concepts and protocols using C programming and network simulators.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. The student has to secure not less than 35% (18 Marks out of 50) in the semester-end examination (SEE).

Continuous Internal Evaluation (CIE):

CIE marks for the practical course is 50 Marks.

The split-up of CIE marks for record/ journal and test are in the ratio 60:40.

- Each experiment to be evaluated for conduction with observation sheet and record write-up. Rubrics
 for the evaluation of the journal/write-up for hardware/software experiments designed by the
 faculty who is handling the laboratory session and is made known to students at the beginning of the
 practical session.
- Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks.
- Total marks scored by the students are scaled downed to 30 marks (60% of maximum marks).
- Weightage to be given for neatness and submission of record/write-up on time.
- Department shall conduct 02 tests for 100 marks, the first test shall be conducted after the 8th week
 of the semester and the second test shall be conducted after the 14th week of the semester.
- In each test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce.
- The suitable rubrics can be designed to evaluate each student's performance and learning ability.
 Rubrics suggested in Annexure-II of Regulation book
- The average of 02 tests is scaled down to 20 marks (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and average marks of two tests is the total CIE marks scored by the student.

Semester End Evaluation (SEE):

SEE marks for the practical course is 50 Marks.

SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by

the University

All laboratory experiments are to be included for practical examination.

(Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. OR based on the course requirement evaluation rubrics shall be decided jointly by examiners.

Students can pick one question (experiment) from the questions lot prepared by the internal /external examiners jointly.

Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners.

General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners).

Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made

The duration of SEE is 03 hours.

Rubrics suggested in Annexure-II of Regulation book

Suggested Learning Resources:

- 1. Simon Haykin, "Digital Communication Systems", John Wiley & sons, First Edition, 2014, ISBN 978-0-471-64735-5.
- 2. K Sam Shanmugam, "Digital and analog communication systems", John Wiley India Pvt. Ltd, 1996.
- 3. Forouzan, "Data Communications and Networking", 5th Edition, McGraw Hill, 2013, ISBN: 1-25-906475-3.

Dept Of Electronics & Communication AIVS MENTAL BACCOCKENDO EZA 324 MIJAT. MOODBIDRI - 574 225