VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI

B.E: Electronics & Communication Engineering / B.E: Electronics & Telecommunication Engineering NEP, Outcome Based Education (OBE) and Choice Based Credit System (CBCS)

(Effective from the academic year 2021 – 22)

V Semester

2

	oT (Internet of Things) La 21EC581	CIE Marks	50
Course Code		SEE Marks	50
Teaching Hours/Week (L: T:P: S)	0:0:2:0		03
Credits	1	Exam Hours	03

To develop skills required to build real-life IoT based projects.
 Sl.No Experiments

 To interface LED/Buzzer with Arduino/Raspberry Pi and write a program to 'turn ON' LED for 1 sec after every 2 seconds.

ii) To interface Push button/Digital sensor (IR/LDR) with Arduino/Raspberry Pi and write a program to 'turn ON' LED when push button is pressed or at sensor detection.

- i) To interface DHT11 sensor with Arduino/Raspberry Pi and write a program to print temperature and humidity readings.
- ii) To interface OLED with Arduino/Raspberry Pi and write a program to print temperature and humidity readings on it.
- To interface motor using relay with Arduino/Raspberry Pi and write a program to 'turn ON' motor when push button is pressed.
- To interface Bluetooth with Arduino/Raspberry Pi and write a program to send sensor data to smartphone using Bluetooth.
- To interface Bluetooth with Arduino/Raspberry Pi and write a program to turn LED ON/OFF when '1'/'0' is received from smartphone using Bluetooth.
- Write a program on Arduino/Raspberry Pi to upload temperature and humidity data to thingspeak cloud.
- Write a program on Arduino/Raspberry Pi to retrieve temperature and humidity data from thingspeak cloud.
- 8 To install MySQL database on Raspberry Pi and perform basic SQL queries.
- Write a program on Arduino/Raspberry Pi to publish temperature data to MQTT broker.
- Write a program to create UDP server on Arduino/Raspberry Pi and respond with humidity data to UDP client when requested.
- Write a program to create TCP server on Arduino/Raspberry Pi and respond with humidity data to TCP client when requested.
- Write a program on Arduino/Raspberry Pi to subscribe to MQTT broker for temperature data and print it.

Course outcomes (Course Skill Set):

At the end of the course the student will be able to:

- 1. Understand internet of Things and its hardware and software components
- 2. Interface I/O devices, sensors & communication modules
- 3. Remotely monitor data and control devices
- 4. Develop real life IoT based projects

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. The student has to secure not less than 35% (18 Marks out of 50) in the semester-end examination (SEE).

Continuous Internal Evaluation (CIE):

CIE marks for the practical course is 50 Marks.

The split-up of CIE marks for record/journal and test are in the ratio 60:40.

- Each experiment to be evaluated for conduction with observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments designed by the faculty who is handling the laboratory session and is made known to students at the beginning
- Record should contain all the specified experiments in the syllabus and each experiment write-up
- Total marks scored by the students are scaled downed to 30 marks (60% of maximum marks).
- Weightage to be given for neatness and submission of record/write-up on time.
- Department shall conduct 02 tests for 100 marks, the first test shall be conducted after the 8^{th} week of the semester and the second test shall be conducted after the 14^{th} week of the semester.
- In each test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce.
- The suitable rubrics can be designed to evaluate each student's performance and learning ability. Rubrics suggested in Annexure-II of Regulation book
- The average of 02 tests is scaled down to 20 marks (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and average marks of two tests is the total CIE marks scored by the student.

Semester End Evaluation (SEE):

SEE marks for the practical course is 50 Marks.

SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by

All laboratory experiments are to be included for practical examination.

(Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. OR based on the course requirement evaluation rubrics shall be decided jointly by examiners.

Students can pick one question (experiment) from the questions lot prepared by the internal /external examiners jointly.

Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners.

General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners)

Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made

The duration of SEE is 03 hours

Rubrics suggested in Annexure-II of Regulation book

Suggested Learning Resources:

- 1. Vijay Madisetti, Arshdeep Bahga, Internet of Things. "A Hands on Approach", University Press
- 2. Dr. SRN Reddy, Rachit Thukral and Manasi Mishra, "Introduction to Internet of Things: A practical Approach", ETI Labs
- 3. Pethuru Raj and Anupama C Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", CRC Press
- 4. Jeeva Jose, "Internet of Things", Khanna Publishing House, Delhi
- 5. Adrian McEwen, "Designing the Internet of Things", Wiley
- 6. Raj Kamal, "Internet of Things: Architecture and Design", McGraw Hill

lent Of Electronics & Communicati Aiva Institute of Engu. & Technons Mijar, MOODBIDRI - 574 225