SOFT AND EVOLUTIONARY COMPUTING (Effective from the academic year 2018 -2019) SEMESTER – VIII					
Subject Code	18AI822	CIE Marks	40		
Number of Contact Hours/Week	3:0:0	SEE Marks	60		
Total Number of Contact Hours	40	Exam Hours	3 H	rs	
CREDITS - 03					
Course Learning Objectives: This course will enable students to:					
 Describe the basics of Soft computing Explain the process Fuzzy &Genetic Algorithm to solve the optimization problem. Analyse the Neuro Fuzzy system for clustering and classification. Illustrate the process of swarm intelligence system to solve real world problems. 					
Module – 1 Introduction to Soft computing: Neural networks, Fuzzy logic, Genetic algorithms,				Contact Hours	
Hybrid systems and its applications. Introduction to classical sets and fuzzy sets: Classical relations and fuzzy relations, Membership functions. T1: Chapter 1 and 7& 8 Module – 2					
Fuzzification and Defuzzification T1: Chapter 9 & 10				08	
Module – 3					
Genetic algorithms: Introduction, Basic operations, Traditional algorithms, Simple GA General genetic algorithms, Operators, Stopping conditions for GA flow. T1: Chapter 15.1 To 15.10 RBT: L1, L2				08	
Module – 4					
Swarm Intelligence System: Introduction, background of SI, Ant colony system				08	

08

Working of ant colony optimization, ant colony for TSP.

T2: 8.1 to 8.5

RBT: L1, L2

Module – 5

Unit commitment problem, particle Swarm Intelligence system

Artificial bee colony system, Cuckoo search system.

T2: 8.6 to 8.9 RBT: L1, L2

Course outcomes: The students should be able to:

- Implement machine learning through neural networks.
- Design Genetic Algorithm to solve the optimization problem.
- Develop a Fuzzy expert system.

• Model Neuro Fuzzy system for clustering and classification

Question Paper Pattern:

- The question paper will have ten questions.
- Each full Question consisting of 20 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

- 1. Principles of Soft computing, Shivanandam, Deepa S. N, Wiley India, 2011/Reprint2014
- 2. Soft Computing with MATLAB Programming, N. P. Padhy, S.P. Simon, Oxford, 2015.

Reference Books:

- 1. Neuro-fuzzy and soft computing, .S.R. Jang, C.T. Sun, E. Mizutani, Phi (EEE edition), 2012
- 2. Soft Computing, Saroj Kaushik, Sunita Tiwari, McGraw Hill, 2018

Head of the Department
Head of the Department
Dept. of Artificial Intelligence & Machine Learning
Alva's Institute of Engineering and Technology
Shobhavan—Campus, Mijar
Shobhavan—Campus, Mijar
Moodubidire 574 225, D.K. Karnataka, India