- For laboratories having only one part: Students are allowed to pick one experiment from the lot with equal opportunity.
- o For laboratories having PART A and PART B: Students are allowed to pick one experiment from PART A and one experiment from PART B, with equal opportunity.
- Change of experiment is allowed only once and marks allotted for procedure to be made zero of the changed part only.
- Marks Distribution (Subjected to change in accordance with university regulations)
 - s) For laboratories having only one part Procedure + Execution + Viva-Voce: 15+70+15 = 100 Marks
 - t) For laboratories having PART A and PART B
 - i. Part A Procedure + Execution + Viva = 6 + 28 + 6 = 40 Marks
 - ii. Part B Procedure + Execution + Viva = 9 + 42 + 9 = 60 Marks

NEURAL NETWORKS AND DEEP LEARNING (Effective from the academic year 2018 -2019) SEMESTER – VIII				
Subject Code	18AI81	CIE Marks	40	
Number of Contact Hours/Week	3:0:0	SEE Marks	60	
Total Number of Contact Hours	40	Exam Hours	3 Hrs	

CREDITS – 03

Course Learning Objectives: This course will enable students to:

- Identify the deep learning algorithms which are more appropriate for various types of learning tasks in various domains.
- Implement deep learning algorithms and solve real-world problems.
- Execute performance metrics of Deep Learning Techniques.

- Execute performance metrics of Deep Learning Techniques.	
Module – 1	Contact
	Hours
Introduction to ANN:	08
Biological to Artificial neuron, Training an MLP, Training a DNN with TensorFlow, Fine	
tuning NN HyperParametersUp and Running with TensorFlow	
Chapter 9 and 10	
Module-2	
Deep Neural network: Introduction, Vanishing Gradient problems, Reusing	08
Pretrained layers, Faster optimizers, avoiding over fitting through regularization	
Chapter 11	
Module-3	
Distributing Tensor flow across devices and servers : Multiple devices on a single	08
machine, multiple servers, parallelizing NN on a Tensor Flow cluster	
Convolution Neural Network: Architecture of the visual cortex, Convolutional	
layer, Pooling layer, CNN architecture	

Chapter 12 and 13	
Module-4	
Recurrent Neural Network: Recurrent neurons, Basic RNN in Tensor Flow,	08
Training	
RNN, Deep RNNs, LSTM Cell, GRU Cell, NLP	
Chapter 14	
Module-5	
Autoencoders: Efficient data representation, Performing PCA, Stacked	08
autoencoders, Unsupervised pretraining using SA, Denoising, Sparse autoencoders,	
variational and other autoencoders.	
Reinforcement Learning: Learning to optimize rewards, policy search,	
Introduction to OpenAI Gym, Neural network polices, Evaluating actions, Policy	
gradients, Markov decision processes, TDL and Q-learning, Learning to play	
Ms.Pac-man using Deep Q Learning	
Chapter 15 and 16	

Course outcomes: The students should be able to:

- Identify the deep learning algorithms which are more appropriate for various types of learning tasks in various domains.
- Implement deep learning algorithms and solve real-world problems.
- Execute performance metrics of Deep Learning Techniques.

Question Paper Pattern:

- The question paper will have ten questions.
- Each full Question consisting of 20 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

1. Hands on Machine Learning with Scikit-Learn & TensorFlow, AurelienGeron, O'Reilly, 2019

Reference Books:

- 1. Deep Learning Lan Good fellow and YoshuaBengio and Aaron CourvilleMIT Press2016.
- 2. Neural Networks and Deep Learning, Charu C. Aggarwal, Springer International Publishing, 2018

Head of the Department
Learning
Dept. of Artificial Intelligence & Machine Learning
Alva's Institute of Engineering and Technology
Shobhavan-Campus, Mijar
Shobhavan-Campus, Mijar
Moodubidire 574 225, D.K. Karnataka, India