ADVANCED MACHINE LEARNING (Effective from the academic year 2018 -2019)				
SEMESTER – VII				
Subject Code	18AI72	CIE Marks	40	
Number of Contact Hours/Week	4:0:0	SEE Marks	60	
Total Number of Contact Hours	50	Exam Hours	3 Hrs	
CREDITS –4				

Course Learning Objectives: This course will enable students to:

- Demonstrate the fundamentals of GDT
- Illustrate the use of KNN
- Explore the Text feature Engineering concepts with Applications
- Demonstrate the use of Ensemble Methods

Module 1	
	Hours
Advanced Machine Learning:	10
Overview, Gradient Descent algorithm, Scikit-learn library for ML, Advanced Regression	
models, Advanced ML algorithms, KNN, ensemble methods.	
T2: Chapter 6 (upto 6.5.4)	
Forecasting: Overview, components, moving average, decomposing time series, auto-	
regressive Models.	
T2: Chapter: 8	
Module 2	
Hidden Markov Model:Introduction, Issues in HMM(Evalution, decoding, learning,	10
classifier)	
T3: Chapter 12	
CLUSTERING	
Introduction, Types of clustering, Partitioning methods of clustering (k-means, k-medoids),	
hierarchical methods	
T3: Chapter 13	
Module 3	
Recommender System:	
Datasets, Association rules, Collaborative filtering, User-based similarity, item-based	
similarity, using surprise library, Matrix factorization	
Text Analytics:	
Overview, Sentiment Classification, Naïve Bayes model for sentiment classification, using	
TF-IDF vectorizer, Challenges of text analytics	
T2: Chapter 9 and 10	
Module 4	
Neural networks and genetic algorithms:	10
Brief history and Evolution of Neural network, Biological neuron, Basics of ANN, Activation	
function, MP model.	
T3: Chapter 6	
Neural Network Representation – Problems – Perceptrons – Multilayer Networks and Back	
Propagation Algorithms – Genetic Algorithms – Hypothesis Space Search – Genetic	

Programming – Models of Evolution and Learning.	
T1: Chapter 4 & 9	
Module 5	
Instant based learning and learning set of rules:	10
Evaluating Hypothesis: Motivation, Estimating hypothesis accuracy, Basics of sampling theorem, General approach for deriving confidence intervals, Difference in error of two hypothesis, Comparing learning algorithms. Instance Based Learning: Introduction, k-nearest neighbor learning(review), locally weighted regression, radial basis function, cased-based reasoning, Reinforcement Learning: Introduction, Learning Task, Q Learning	
T1 :Sections: 5.1-5.6, 8.1-8.5, 13.1-13.3	

Course Outcomes: The student will be able to:

- Apply effectively ML algorithms to solve real world problems.
- Apply Instant based techniques and derive effectively learning rules to real world problems.

Question Paper Pattern:

- The question paper will have ten questions.
- Each full Question consisting of 20 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

- T1. Tom M. Mitchell, Machine Learning, McGraw-Hill Education, 2013
- T2. Machine Learning using Python, Manaranjan Pradhan, U Dinesh Kumar, Wiley 2019
- T3. Machine Learning, Anuradha Srinivasaraghavan, VincyJoeph, Wiley 2019

Reference Books:

- 1. EthemAlpaydin, Introduction to Machine Learning, PHI Learning Pvt. Ltd, 2nd Ed., 2013
- 2. T. Hastie, R. Tibshirani, J. H. Friedman, The Elements of Statistical Learning, Springer, 1st
- 3. Machine Learning, SaikatDutt, Subramanian Chandramouli, Amit Kumar Das, Pearson, 2020

Dept. of Artificial Intelligence & Machine Learning ept. or Artificial intelligence of indumine Learning Applications of Engineering and Technology Alva's Institute of Engineering and Technology nva s msmure or Engineering and Technology Shobhavan Campus, Mijar Shobhavan Campus, Mijar Moodubidire 574 225, D.K. Kamataka, India