VI Semester

MACHINE LEARNING				
Course Code	21AI63	CIE Marks	50	
Teaching Hours/Week (L:T:P: S)	3:0:0:0	SEE Marks	50	
Total Hours of Pedagogy	40	Total Marks	100	
Credits	03	Exam Hours	03	

Course Learning Objectives

- CLO 1. Define machine learning and understand the basic theory underlying machine learning.
- CLO 2. Differentiate supervised, unsupervised and reinforcement learning
- CLO 3. Understand the basic concepts of learning and decision trees.
- CLO 4. Understand Bayesian techniques for problems appear in machine learning
- CLO 5. Perform statistical analysis of machine learning techniques.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) needs not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyse information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem with different circuits/logic and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.

Module-1

Introduction:

Machine learning Landscape: what is ML?, Why, Types of ML, main challenges of ML

Concept learning and Learning Problems – Designing Learning systems, Perspectives and Issues – Concept Learning – Find S-Version Spaces and Candidate Elimination Algorithm –Remarks on VS- Inductive bias.

Text book 2: Chapter 1, Text book 1: Chapter 1 and 2

Teaching-	Chalk and board, Active Learning, Problem based learning
Learning	
Process	

Module-2

End to end Machine learning Project: Working with real data, Look at the big picture, Get the data, Discover and visualize the data, Prepare the data, select and train the model, Fine tune your model.

Classification: MNIST, training a Binary classifier, performance measure, multiclass classification, error analysis, multi label classification, multi output classification

Text book 2: Chapter 2, Chapter 3

Teaching-	Chalk and board, Active Learning
Learning	

Process

Module-3

Training Models: Linear regression, gradient descent, polynomial regression, learning curves, regularized linear models, logistic regression

Support Vector Machine: linear, Nonlinear, SVM regression and under the hood

Text book 2: Chapter 4, Chapter 5

Teaching-	Chalk and board, Problem based learning, Demonstration
Learning	
Process	

Module-4

Decision Trees Training and Visualizing DT, making prediction, estimating class, the CART training, computational complexity, GINI impurity, Entropy, regularization Hyper parameters, Regression, instability

Ensemble learning and Random Forest: Voting classifiers, Bagging and pasting, Random patches, Random forests, Boosting, stacking

Text book 2: Chapter 6, Chapter 7

Teaching-	Chalk& board, Problem based learning
Learning	
Process	

Module-5

Bayes Theorem – Concept Learning – Maximum Likelihood – Minimum Description Length Principle – Bayes Optimal Classifier – Gibbs Algorithm – Naïve Bayes Classifier – example-Bayesian Belief Network – EM Algorithm

Text book 1: Chapter 6

Teaching-	Chalk and board, MOOC
Learning	
Process	

Course Outcomes

At the end of the course the student will be able to:

- CO 1. Understand the concept of Machine Learning and Concept Learning.
- CO 2. Apply the concept of ML and various classification methods in a project.
- CO 3. Analyse various training models in ML and the SVM algorithm to be implemented.
- CO 4. Apply the ML concept in a decision tree structure and implementation of Ensemble learning and Random Forest.
- CO 5. Apply Bayes techniques and explore more about the classification in ML.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

Three Unit Tests each of 20 Marks (duration 01 hour)

- 1. First test at the end of 5th week of the semester
- 2. Second test at the end of the 10^{th} week of the semester
- 3. Third test at the end of the 15^{th} week of the semester

Two assignments each of 10 Marks

- 4. First assignment at the end of 4th week of the semester
- 5. Second assignment at the end of 9th week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for **20 Marks** (duration **01 hours**)

6. At the end of the 13th week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be **scaled down to 50 marks**

(To have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper has to be designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (duration 03 hours)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module.

Suggested Learning Resources:

Textbooks

- 1. Tom M. Mitchell, Machine Learning, McGraw-Hill Education, 2013
- 2. Aurelien Geron, Hands-on Machine Learning with Scikit-Learn & TensorFlow, O'Reilly, Shroff Publishers and Distributors Pvt. Ltd 2019

Reference:

- 1. Ethem Alpaydin, Introduction to Machine Learning, PHI Learning Pvt. Ltd, 2nd Ed., 2013
- 2. T. Hastie, R. Tibshirani, J. H. Friedman, The Elements of Statistical Learning, Springer, 1st edition,
- 3. Machine Learning using Python, Manaranjan Pradhan, U Dinesh Kumar, Wiley, 2019
- 4. Machine Learning, Saikat Dutt, Subramanian Chandramouli, Amit Kumar Das, Pearson, 2020

Web links and Video Lectures (e-Resources):

- 1. https://www.youtube.com/playlist?list=PL1xHD4vteKYVpaIiy295pg6_SY5qznc77
- 2. https://nptel.ac.in/courses/106/106/106106139/

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

Head of the Department

Head of the Department

Dept. of Artificial Intelligence & Machine Learning

Alva's Institute of Engineering and Technology

Shobhavan—Campus, Mijar

Shobhavan—Campus, Mijar

Moodubidire 574 225, D.K. Karnataka, India