WASTE LAND DEVELOPMENT (PEC-I)			
Course Code	21AG644	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	(3:0:0:0)	SEE Marks	50
Total Hours of Teaching-Learning	40	Total Marks	100
Process			00
Credits	03	Exam Hours	03

Course Objectives:

- To impart knowledge on concept and causes of land degradation, assessment of land degradation and wasteland development.
- To study about socio-economic perspectives of sustainable wasteland development, government policies and participatory approach.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- 1. Adopt different types of teaching methods to develop the outcomes through PowerPoint presentations and Video demonstrations or Simulations.
- 2. Chalk and Talk method for Problem Solving.
- Arrange visits to show the live working models other than laboratory topics.
- Adopt collaborative (Group Learning) Learning in the class.
- Adopt Problem Based Learning (PBL), which fosters students Analytical skills and develops thinking skills such as evaluating, generalizing, and analyzing information.

Module-1

Land degradation - concept, classification - arid, semiarid, humid and sub-humid regions, denuded range land and marginal lands and assessment. Wastelands - factors causing, classification and mapping of wastelands, planning of wastelands development - constraints, agro-climatic conditions, development options, contingency plans.

Teaching-

1. PowerPoint Presentation

Learning

2. Chalk and Talk are used for Problem Solving (In-general)

Process

4. Laboratory Demonstrations and Practical Experiments

Module-2

Conservation structures - gully stabilization, ravine rehabilitation, sand dune stabilization, water harvesting and recycling methods. Afforestation - agro-horti-forestry-silvipasture methods, forage and fuel crops - socioeconomic constraints.

Teaching-Learning

Process

1. PowerPoint Presentation

3. Video demonstration or Simulations

- 2. Chalk and Talk are used for Problem Solving (In-general)
- 3. Video demonstration or Simulations
- 4. Laboratory Demonstrations and Practical Experiments

Module-3

Shifting cultivation, optimal land use options. Wasteland development - hills, semi-arid, coastal areas, water scarce areas, reclamation of waterlogged and salt-affected lands.

Teaching-Learning

1. PowerPoint Presentation

Process

- 2. Chalk and Talk are used for Problem Solving (In-general)
- 3. Video demonstration or Simulations
- 4. Laboratory Demonstrations and Practical Experiments

Module-4

Mine spoils- impact, land degradation and reclamation and rehabilitation, slope stabilization and mine environment management. Micro-irrigation in wastelands development.

Teaching-Learning Process

- 1. PowerPoint Presentation
- 2. Chalk and Talk are used for Problem Solving (In-general)
- 3. Video demonstration or Simulations
- 4. Laboratory Demonstrations and Practical Experiments

Module-5

Sustainable wasteland development - drought situations, socio-economic perspectives. Government policies. Participatory approach. Preparation of proposal for wasteland development and benefit-cost analysis.

Teaching-

1. PowerPoint Presentation

Learning Process

- 2. Chalk and Talk are used for Problem Solving (In-general)
- 3. Video demonstration or Simulations
 - 4. Laboratory Demonstrations and Practical Experiments

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

- 1. Impart knowledge on concept and causes of land degradation, assessment of land degradation and wasteland development.
- 2. Study about socio-economic perspectives of sustainable wasteland development, government policies and participatory approach.
- 3. Recognize importance of watershed.
- 4. To understand the Geomorphology of watershed and watershed management
- 5. Be proficient about the Integrated watershed management practices
- 6. Formulation of project proposal for watershed management programme

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50)in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation:

Three Unit Tests each of 20 Marks (duration 01 hour)

- 1. First test at the end of 5th week of the semester
- 2. Second test at the end of the 10th week of the semester
- 3. Third test at the end of the 15th week of the semester

Two assignments each of 10 Marks

- 4. First assignment at the end of 4th week of the semester
- 5. Second assignment at the end of 9th week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for **20 Marks** (duration **01 hours**)

6. At the end of the 13th week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be scaled down to 50 marks

(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (duration 03 hours)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 1. Panda S.C., 2007. Soil water conservation and dry farming. Agrobiospublishers. India
- 2. Jat M. L., Bhakar, S.R., Sharma, S.K. and Khotari, A.K. 2013. Dry land technology. Scientific publishers., Jhodpur
- 3. Mahnot, S.C., Songh P. K. and Chaplot P.C. (2012). Soil and water conservation & Watershed Management. Apex Publishing House., Udaipur.
- 4. Suresh, R., 2014. Soil and water conservation Engineering. Standard Publishers Distributors Delhi.
- 5. Michael A. M. 2012. Irrigation: Theory and Practice. Vikas Publishing Vikas Publ. House New Delhi.
- 6. Chaudhuri., A.B., 1992, Mine environment and management: An Indian Scenario. Ahsih publishing house. Newdelhi.
- 7. Jaume Bech., Claudio Bini and Mariya A Pashkevich.,2017. Assessment, Restoration and Reclamation of Mining Influenced Soils. Candice Janco Elseveir publisher., UK.
- 8. Shankaranarayan.K.A.,1962.Wasteland Development and Their Utilisation, Scientific Publishers, Jodhpur
- 9. Karthikeyan, C., K. Thangaraja, C. Cinthia Fernandez and K. Chandrakandon. 2009. Dryland Agriculture and Wasteland Management. Atlantic Publishers and Distributors Pvt. Ltd., New Delhi.

Web links and Video Lectures (e-Resources):

Holicano H.O.D.

Dept. of Agricultural Engineering Alva's Institute of Engg. & Technology Mijar, Moodubidire - 574225