| SOLAR | R PHOTOVOLTAIC SYSTEM | (PEC-I) | | |--------------------------------|-----------------------|-------------|-----| | Course Code | 21AG643 | CIE Marks | 50 | | Teaching Hours/Week (L:T:P: S) | (3:0:0:0) | SEE Marks | 50 | | Total Hours of Pedagogy | 40 | Total Marks | 100 | | Credits | 03 | Exam Hours | 03 | ### Course Objectives: - To develop a comprehensive technological understanding in solar PV system components - To provide in-depth understanding of design parameters to help design and simulate the performance of a solar PV power plant - To pertain knowledge about planning, project implementation and operation of solar PV power generation ## Teaching-Learning Process (General Instructions) These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes. - 1. Adopt different types of teaching methods to develop the outcomes through PowerPoint presentations and Video demonstrations or Simulations. - 2. Chalk and Talk method for Problem Solving. - 3. Arrange visits to show the live working models other than laboratory topics. - 4. Adopt collaborative (Group Learning) Learning in the class. - 5. Adopt Problem Based Learning (PBL), which fosters students Analytical skills and develops thinking skills such as evaluating, generalizing, and analyzing information. - 6. Conduct Laboratory Demonstrations and Practical Experiments to enhance experiential skills. #### Module-1 #### Introduction Sources of renewable energy; global potential for solar electrical energy systems. Solar radiation. Extra terrestrial and terrestrial solar spectrum; clear sky direct-beam radiation; total clear sky insulation on a collecting surface; radiation on the collector in tracking systems; calculation of average monthly insolation from measured data | Teaching | |----------| | Learning | | Process | - 1. PowerPoint Presentation - 2. Chalk and Talk are used for Problem Solving (In-general) - 3. Video demonstration or Simulations - 4. Laboratory Demonstrations and Practical Experiments #### Module-2 #### PV cells and modules Solar Cell and its function, Solar Technologies, Solar Cell Parameters, Efficiency of Solar Cell, Solar PV Module, Rating of Solar PV Module, PV Module Parameters, Efficiency of PV Module, Measuring Module Parameters ### Teaching-Learning Process - 1. PowerPoint Presentation - 2. Chalk and Talk are used for Problem Solving (In-general) - 3. Video demonstration or Simulations - 4. Laboratory Demonstrations and Practical Experiments #### Module-3 #### Solar Photovoltaic Module Array Connection of PV Module in Series and Parallel, Estimation and Measurement of PV Module Power, Selection of PV Module. ## Teaching-Learning - 1. PowerPoint Presentation - 2. Chalk and Talk are used for Problem Solving (In-general) # Process 3. Video demonstration or Simulations4. Laboratory Demonstrations and Practical Experiments ## Module-4 ### Solar PV System Design and Integration Solar Radiation Energy Measurements, Estimating Energy requirement, Types of Solar PV System, Design methodology for SPV system, Design of Off Grid Solar Power Plant, Case studies of 3KWp Off grid Solar PV Power Plant, Design and Development of Solar Street Light and Solar Lantern, Off Grid Solar power Plant. | | • | |-----------|---| | Teaching- | 1. PowerPoint Presentation | | Learning | 2. Chalk and Talk are used for Problem Solving (In-general) | | Process | 3. Video demonstration or Simulations | | | 4. Laboratory Demonstrations and Practical Experiments | #### Module-5 ## Solar collectors and Solar energy storage Different types of solar collectors, Flat plate and concentrated type collectors, Fundamental Terminologies of thermal storage, Sensible heat storage materials, Latent heat storage materials, Solar thermo-chemical energy storage systems, Advantages and disadvantages of solar thermal storage, application of thermal storage. | Teaching- | 1. PowerPoint Presentation | |-----------|---| | Learning | 2. Chalk and Talk are used for Problem Solving (In-general) | | Process | 3. Video demonstration or Simulations | | | 4. Laboratory Demonstrations and Practical Experiments | ## Course outcome (Course Skill Set) At the end of the course the student will be able to: - 1. Understand of renewable and non-renewable sources of energy - 2. Gain knowledge about working principle of various solar energy systems - 3. Analyse the solar power PV power generation - 4. Applying the knowledge on to installation and integration of PV modules for different applications - 5. Understand the operation of different solar collectors in the market - 6. Understand the solar thermal energy storage systems #### Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50)in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together ## Continuous Internal Evaluation: Three Unit Tests each of 20 Marks (duration 01 hour) - 1. First test at the end of 5^{th} week of the semester - 2. Second test at the end of the 10th week of the semester - 3. Third test at the end of the 15^{th} week of the semester ## Two assignments each of 10 Marks - 4. First assignment at the end of 4^{th} week of the semester - 5. Second assignment at the end of 9th week of the semester Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for 20 Marks (duration 01 hours) 6. At the end of the 13th week of the semester The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be scaled down to 50 marks (to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course). CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. ## Semester End Examination: Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (duration 03 hours) - 1. The question paper will have ten questions. Each question is set for 20 marks. - 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module. The students have to answer 5 full questions, selecting one full question from each module ## **Suggested Learning Resources:** ## **Books** - 1. Chetansingh solanki Solar Photovoltaic PHI, Learning private ltd., New dehli- 2018 - 2. G.D Rai Non-conventional Sources of Energy Khanna Publishers, Delhi, 2012 - 3. Chetan Singh Solanki Renewable Energy Technologies; A Practical Guide for Beginners PHI School Books (2008) - 4. Kothari D.P. and Signal K.C Renewable Energy Sources and Emerging Technologies, New Arrivals -PHI; 2 Edition (2011) ## Web links and Video Lectures (e-Resources): # Activity Based Learning (Suggested Activities in Class)/ Practical Based learning - Quizzes - Assignments - Seminars - Mini Projects H.O.D. Dept. of Agricultural Engineering Alva's Institute of Engg. & Technology Mijar, Moodubidire - 574225