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Abstract- This research article focuses on the detection of the 

mature stage of Aspergillus flavus fungus using an automated 

approach. Aspergillus flavus is a pathogenic fungus known for 

causing diseases in crops and producing carcinogenic 

mycotoxins. Detecting the mature stage is crucial for optimizing 

the production of antibiotics such as Aspergillic acid, which is 

abundantly produced during this phase. Manual color detection 

methods are labour-intensive and prone to errors. Existing 

techniques face challenges due to lighting conditions and 

background issues. To overcome these limitations, we propose a 

two-part automated process that involves background elimination 

using comparative thresholding techniques and mapping the 

mature phase on the Lab* scale. This approach eliminates 

lighting conditions and enhances accuracy in identifying the 

mature phase. By automating the detection process, our method 

offers a significant advancement in the production of antibiotics 

and reduces the reliance on manual intervention. The 

recommended methodology has the competence to upgrade 

efficiency in the pharmaceutical industry and educational 

research on fungal growth. 

Keywords--Aspergillus flavus, Fungal growth, Automated 

detection, Mature stage, Antibiotic production. 

I. INTRODUCTION 

Mycology is a biological field that studies mycota, also 
designated as fungi. Mycota appear with distinct shapes and 
sizes, that can also impact humans in various ways. Some of 
them can be used for making fire, medicine, food, or drugs, 
while others can be harmful or poisonous. Also, they can be a 
source of danger and dangers, such as toxicity or infections. 
An example of a pathogenic organism is Aspergillus flavus, 
which is a pretty non-aggressive devious pathogen disturbing 
various crop. It induces diseases in different crops [1]. 
Numerous pathogenic fungi affect both animals and plants. 
Certain types of these accumulate on plants and through 
consumption of the same infect humans. In minor 
circumstances, fungi can also be transferred indirectly to 
humans. For insistence, when domestic animals consume 
poisoned grain, further products derived from them may 
inhibit unpredictable levels of fungal toxins [2].  

Contaminants produced by Aspergillus flavus has a huge 
impact and can supper deeply and extensive, and even 
individuals who have certainly not contracted the mould can 
be affected.  Research has additionally confirmed that, apart 
from fumigatus, flavus is the next most ubiquitous species 
uncovered in human infections. It typically appears in soil, 

corpse vegetation, and animals. Primarily, Flavus colonies 
stage a yellow-green emergence, which progressively shifts to 
a darker shade of green color across time. The texture is 

reminiscent of wool or cotton and occasionally granular [3,4].  

Aspergillic acid is an organic acid produced by all 
specifies of aspergillus. It is used heavily in the production of 
antibiotics such as penicillin [5,6]. Though antibiotics can 
easily be produced using this acid, the difficulty lies in 
extracting the ethanoic acid to its purest form. This is a hassle 
since the fungus produces this acid in minimal quantities 
during its final stages. Several studies have revealed that all 
the species of this fungus Aspergillus flavus produces large 
quantities of Aspergillic acid during its maturity phase. 

Flavus reveals allergenic traits and is also a recognized 
pathogen affecting plants, humans, and animals. It can further 
lead to aspergillosis leading to the derivation of Aflatoxin, 
known to be a carcinogenic mycotoxin. Moreover, there have 
been reports mentioning the impact of flavus in nasal sinus 
lesions and other diseases of invasive nature [7]. This mold is 
capable of thriving within a expansive range of temperatures 
and pH levels. The most likely growth rates are at 33°C, 
although the survival of the same demands the range of 
temperatures spanning from 10-48 degree Celsius. Similar to 
other molds, Flavus also demands moist environment for 
development. Additionally, it has the survival capacity even 
in the areas with minimum water activities, indicating lowest 
value of 0.78. Even it demonstrates noteworthy pH 
forbearance, exhibiting the power to grow in settings of 
diverse pH values.  It can survive in lowest possible pH of 2.1 
and also a highest value of 11.2. However, the most favorable 
development is observed in a range of pH between 3.4 to 10 
[8]. The growth of the species is categorized into three 
different stages which is portrayed in Fig. 1.  
 

 
(a) Initial Phase 

 
(b) Mature Phase 
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(c) Extraction Phase 

Fig. 1. Phases of Aspergillus flavus’ growth  

Though the fungus has pathogenic abilities, it also has 
some advantages. When Aspergillus flavus reaches maturity, 
it creates a coat of hydrophobic proteins that repel water on 
contact keeping the surface dry. Extraction of the Aspergillic 
acid is performed when the fungus reaches maturity. Fig 1(c) 
clearly shows the fungus reaching the maturity stage, sending 
off a light greenish tinge embedded on a white seabed. During 
this phase the fungus produces the highest amount of 
Aspergillic acid. Achieving the judgement of colour change 
in this phase using manual labour is too tiresome. It can cause 
errors to even the most expert mycologists, thereby causing 
issues in the extraction process. In the current situation, the 
manual practice of colour detection requires a lot of human 
resources. Hence, automated colour detection in fungi plays 
an essential role in the education field and industries to study 
fungal growth. Generally, it is common for fungi to change 
colour and even texture under different culture conditions like 

pH, culture medium and temperature [9]. 

In this exertion, we extend the proposal of an automated 
methodology to aid the detection of mature stage of 
aspergillus flavus fungus. Though existing techniques exist 
that can detect the color of the fungus they fail terribly 
because of lighting conditions, background issues etc. We 
overcome this by inducing a two-part process which 
eliminates the background from the fungus using comparative 
thresholding techniques [10]. We also identify the last stage 
of the fungus by eliminating all lighting conditions and 
mapping the mature phase on the Lab* scale [11]. This 
twofold process helps the mycologists to decide the accurate 
mature phase of the fungus without manual intervention 

thereby increasing the antibiotic production process. 

II. LITERATURE SURVEY 

Image analysis techniques have proven invaluable in multiple 
domains, including agriculture and medical diagnostics. 
Teena et al.  [12] conducted research on the detection of 
fungal contamination in different date varieties using RGB 
color imaging. Their study involved categorizing samples into 
three groups: untreated control, surface sterilized and rinsed, 
and surface sterilized, rinsed, and fungal inoculated. By 
employing an RGB color imaging system, the authors 
captured color images of the date samples and utilized 
classification models to assess the accuracy of detecting 
fungal infection. The results demonstrated the method's 
effectiveness, with the Fard variety achieving the highest 
accuracy (97%) in the two-class model, followed by Khalas 
(100%) and Naghal (99%). This research sheds light on the 
potential of RGB color imaging as a reliable tool for 

identifying fungal contamination in agricultural contexts. 

The detection of tuberculosis (TB) in chest X-rays is a 
critical area of research in medical imaging. Reference [13] 
provides a comprehensive review of recent advancements in 
computer-aided TB detection. The authors emphasize the 
significance of contrast enhancement techniques in improving 
the visibility of lung boundaries and tissue surfaces in chest 
X-ray images. Various methods, such as histogram analysis, 
histogram equalization (HE), wavelet-based transformations, 
and piecewise linear models, are explored to enhance the 
effectiveness of TB detection algorithms. The review also 
discusses an energy normalization technique that shows 
promising results in improving lung segmentation across 
diverse X-ray datasets. This literature review offers valuable 
insights into the modern state-of-the-art techniques in TB 
detection and underscores the potential for further 

advancements in this important field. 

Moving forward, other studies have explored image 
analysis techniques in different domains. Camargo et al. [14] 
propose an a method relying on image processing techniques 
for discovering diseases of plants in the form of visible 
symptoms. Their approach involves transforming RGB 
images into specialized color spaces and employing histogram 
analysis for segmentation. Barbedo [15] presents a method for 
distinguishing healthy and infested maize plants using digital 
images, achieving remarkable accuracy. Pagola et al. [16] 
propose a novel method for quantifying nitrogen deficiency in 
barley leaves using color channel manipulation and principal 
component analysis. Patel et al.  [17] explore HE techniques 
for contrast enhancement in image processing. Kong [18] 
highlights the importance of global HE and discusses 
alternative HE methods. Padmavathi and Thangadurai [19] 
emphasize the significance of digital image processing in 
medical and biological sciences. Kanan and Cottrell [20] 
challenge the assumption that color-to-grayscale conversion 
has minimal impact on image recognition, presenting a 

comparative analysis of grayscale algorithms. 

In conclusion to an extensive literature review, it becomes 
evident that color changes in plants serve as a valuable 
indicator for growth rate detection. This conclusion is 
supported by a thorough examination of articles pertaining to 
color image processing techniques. Among these techniques, 
HE emerges as a particularly effective method for identifying 
and aligning color components. Its application in plant 
analysis shows promise for advancing our understanding of 
growth patterns. 

III. PROPOSED SYSTEM 

The research framework we propose encompasses a 
comprehensive system comprising five key phases as depicted 
in Fig. 2.: Image Acquisition, Pre-processing, Channel 
Conversion, Background (BG) Removal, and Class Mapping. 
Each phase plays a crucial role in the overall process, 
contributing to the accurate analysis of the acquired images. 
In the ensuing sections, we organise a detailed overview of the 
methodology employed in each phase, highlighting the 
specific steps involved and their significance in achieving 
reliable results. By following this systematic approach, we 
aim to enhance the effectiveness of image analysis and 
facilitate a deeper understanding of the underlying patterns 
and characteristics of data. 
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Fig. 2. The Proposed Research Framework for Image Categorization. 

A. Image Acquisition 

During the initial stage of our research, we captured the 
fungal samples using a standard camera setup integrated with 
a microscope. This setup provides optimal conditions for 
acquiring high-quality images of fungal specimens. The 
samples are carefully placed on a flat, transparent surface 
within the microscope's field of view. To ensure consistent 
lighting conditions and minimize BG interference, a constant 
light source is employed, illuminating the samples against a 
white BG [21]. This controlled setup allows for precise and 
accurate image acquisition, facilitating subsequent processing 
and analysis tasks. By capturing the fungal samples under 
these controlled conditions, we aim to mitigate any potential 
variations and artifacts that could affect the accuracy of our 
research findings. 
 

B. Image pre-processing 

This stage enhances the effectiveness of maturity 
prediction by enabling efficient decision-making capabilities. 
To ensure optimal extraction of fungal features from images, 
it is essential to appropriately handle image size and BG noise 
attributes, taking into account the specific domain [22]. The 
following sub-techniques are integrated to efficiently extract 
image features. 

• Image resizing : This phase resizes the input image to the 
size 200 by 200 pixels. 

• BG Noise Removal: The RGB color model undergoes 
processing to eliminate BG noise. Initially, the image is 
converted to grayscale, resulting in the creation of an 
image in grayscale form. This form of image is 
subsequently prepared in binary format and employed for 
the Gaussian-based removal of background noise from the 
image [22]. The mathematical explanation of this process 
is provided by equations (1) and (2). �����,��	 
 �. 2989 ∗ �����,��� � � �. 587 ∗ �����,��	 �� �. 114 ∗ �����,��� � 

(1) 

���	���� 
 �2����� ∗ !���"#�"��$"  
(2) 

In equation (1), �����,��	 , �����,��� , �����,��	  and �����,���  represents the grayscale, red, green and blue 

channels, respectively. In equation (2) ���	���� 

represents the gaussian image noise reduction with a �� a 
factor of 0.6. 

• Grayscale conversion: Grayscale conversion of a color 
image is accomplished in this section by computing  mean 
values as per the formulation presented in equation 1. Fig. 
3. illustrates the grayscale representation of the fungal 
sample [23].  

 
(a) 

 
(b) 

Fig. 3. (a):  Original RGB image (b): Converted gray scaled image 

C. Channel conversion 

In this section, we delve into the process of channel 
conversion, a vital aspect of color image processing. Fig. 4. 
illustrates a significant transformation as the RGB image 
undergoes conversion to highlight the blue color component, 
serving the purpose of extraction. By reducing the values of 
the channels corresponding to red and blue to zero, the 
intensity of the channel representing green color is effectively 
amplified, resulting in a striking and vibrant representation. 
Fig. 5. exemplifies this conversion process by showcasing the 
resized fungal image converted into a greener color 
component while disregarding the red and bluish components. 
This deliberate channel conversion enables a focused analysis, 
revealing the desired visual information with clarity and 
precision. 

 
Fig. 4. Visual presentation of channel conversion 

 
Fig. 5. RGB value of each pixel in channel conversion 

 

D. BG Removal 

One crucial stage in the BG removal process involves 
generating a binary mask known as the Otsu mask. To 
efficiently remove BG information, we employ Nobuyuki 
Otsu's binary mask technique. This method utilizes a 
histogram-based approach to evaluate edge criteria by 
calculating the intra or inter-class variance. The selection of 
this criterion aims to minimize variances by assigning weight 
probabilities to the variances between classes. The 
computation of this aspect is represented by Equations (3)-(5). 
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&' 
 ∑ )*�)�+� ,-'.'�/�  (3) 

& 
 ∑ )*�)�+� ,-'. �/�  (4) 

01 
 2 )*�)�3� 
,-'

 (5) 

&' and &  symbolize the probabilities allotted to two 
classes divided by a threshold value, T. The class probability &�', ��4� is derived by inspecting different bins of the 

histogram. Subsequently, the product of pre-processed RGB 
image fed as an input and the computed mask is obtained, 
enabling the extraction of fungal sample regions.  

It is equally important to make a clear note that in the 
resulting image, pixels belonging to the original image will 
preserve their values only if the same pixel in the binary 
masked image appears to be one. Contrarywise, if the same 
pixel in the binary masked image appears to be zero, the 
resultant image will adopt the binary mask's pixel value. For 
a visual representation of the binarization process, refer to 
Fig. 6. Additionally, Fig. 7 illustrates the pixel-wise outcome 
of binary mask’s application with a value of one for all color 
components, while Fig. 8 displays the consequence of binary 
mask’s application with a value of zero for all color 
components. 

 

Fig. 6. Visual representation Binary Masking 

 
Fig. 7. Pixelwise RGB value when mask is 1. 

 

Fig. 8. Pixelwise RGB value when mask is 0. 

E. Class Mapping 

Class mapping is a very crucial stage of the proposed system 
which maps the input image to the stage of maturity based on 
the calculation of threshold value achieved. To estimate the 
threshold value, Lab* color transformation technique is used. 
The process of transformation is elegantly expressed through 
the mathematical representation provided in equations (6) to 
(9). These equations precisely delineate how the 
transformation takes place, allowing for a comprehensive 
understanding of the underlying mechanisms involved. 
 

5∗ 
 116 ∗ 789 : ;;+< = 16 
(6) 

>∗ 
 =500 ∗ @789 : ;;+< = 789 : AA+<B (7) 

C∗ 
 =200 ∗ D789 @ EE+B = 789 @ ;;+BF (8) 

789�G� 
 H G I , )7 G J KI858 � G3K�  , !MN! (9) 

In this context, the symbol δ represents a specific constant, 

precisely δ = 12/58. The terms  A+ , ;+ and E+ are CIEXYZ 
tri stimulus amounts of the associated white point. To shed 
light on the illuminant D65, which has a normalization value 
of Y=100, we delve into the distinctive details of the variables  A+, ;+ and E+ , which take on the respective values: 095.047, 
0100.000 and 0108.883.  

To avoid an infinite slope at t=0, we split the distribution 
function 'F' into two distinct parts over its domain. Under 
certain conditions, 'F' exhibits cubic behavior, specifically 

below a value of t=y, and matches the value GOP at t0, including 
both the value and slope. In our unique approach to fungal 
analysis, we employ a* estimated values from the fungal 
sample. These values are vital for making crucial decisions 
about antibiotic extraction. 
Upon accomplishing background image processing, all the a* 
values are meticulously gathered and summed. This total is 
then used to calculate the mean a* value. By analyzing these 
values, we can effectively categorize the fungus's maturity 
phase into three distinct stages: Initial, Mature, and 
Extraction. Through extensive experimentation, we have 
successfully determined threshold values for the three defined 
maturity categories based on equations (6), (7), and (8) when 
applied to a large number of collected samples. For reference, 
the specific threshold values for the defined lemon categories 
are detailed in Table I, serving as a useful guide in our 
research. 

TABLE I THRESHOLD a* VALUES  

Category Percentage of a* a* threshold values 

Initial  10 to 30 Less than or equal to -8 

Mature  30 to 60 Greater than -8 and less 
than or equal to -3 

Extraction  60 to 100 Greater than -3 and less 
than or equal to 0 

IV.  RESULTS & DISCUSSION 

In this segment, we present the empirical findings derived 
from the application of our novel methodology, unveiling the 
remarkable results achieved through our carefully conducted 
experiments. 

A. Dataset Collection 

The collection phase involved conducting a comprehensive 
analysis on 150 samples of aspergillus flavus fungus, 
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encompassing various categories and maturity levels. These 
samples were carefully cultivated under controlled laboratory 
conditions to ensure ideal growth conditions. To establish a 
reliable baseline, around fifty fungal samples were obtained 
from experienced microbiologists specializing in mycology, 
each representing three distinct maturity levels.  

B. Experimental Observations 

In this section of the experiment, a thorough evaluation was 
conducted on a diverse set of samples from different 
categories of Aspergillus Flavus. Approximately fifty 
samples were obtained for each category, and the a* threshold 
values were extracted as outlined in Table I. These threshold 
values play a crucial role in the analysis. Afterward, we 
meticulously compared the experimental results obtained 
from our research with the meticulously crafted theoretical 
descriptions of the various fungus categories. This rigorous 
analysis allowed us to draw meaningful conclusions and gain 
valuable insights into the accuracy and effectiveness of our 
proposed methodology. The findings are presented in Table 
II, providing a comprehensive overview that facilitates a 
meaningful comparison between the observed characteristics 
and the expected attributes of each fungus category. 
 

TABLE II EXTRACTED a* THRESHOLDS FOR ASPERGILLUS 
FLAVUS CATEGORIES. 

Stage of 

Maturity 

Number of 

Samples 

Under Test 

Number of 

Samples 

Cleared the 

Test 

Rate of Pass 

(%) 

Extraction 50 45 90 

Maturity 50 47 94 

Initial 50 46 92 

C. Graphical analysis 

To conduct a comprehensive analysis of the test results, we 
generated a graph based on the data provided in Table II. This 
graph displays the number of samples on the x-axis and the 
corresponding calculated a* values on the y-axis. The samples 
that successfully passed the test fall within the designated 
range for a specific maturity level, which is detailed in Table 
1. However, when a sample fails the test, its a* value falls 
outside this range. For a visual representation, please refer to 
Figures 9 – 11, where we present the graphical analysis of 
these findings. These visualizations offer unique insights into 
the performance and distribution of the tested samples, 
reinforcing the reliability and validity of our methodology. 

 
Fig. 9. Initial Stage - Graph of a* values 

 
Fig. 10. Mature stage - Graph of a* values. 

 

 
Fig. 11. Extraction stage - Graph of a* values. 

Fig. 11 provides conclusive evidence showcasing the 
certainty of a* values obtained during the extraction phase, 
which range from -3 to 0. This robust range of values 
demonstrates the system's effectiveness in accurately 
identifying the fungus, making it a feasible solution for 

antibiotic extraction purposes. 

D. Comparative assessment with traditional approaches 

In this section, we meticulously conducted an extensive 
comparative evaluation, scrutinizing the performance of our 
innovative color image processing techniques in direct 
comparison to long-established conventional methodologies. 
The outcomes of this in-depth comparative analysis are 
comprehensively presented in Table III, offering a detailed 

insight into the experimental observations.  

TABLE III  COMPARATIVE EVALUATION OF PROPOSED 
TECHNIQUE WITH THE TRADITIONAL APPROACHES. 

Technique Average efficiency (%) 

CIELUV 51.28 

CIELAB 74.66 

HCL 83.17 

Proposed  92 

Based on the data depicted in the table, it is evident that the 
proposed method outperforms all conventional approaches, 

thereby establishing the value of its implementation. 

 35
Authorized licensed use limited to: Alvas Institute of Engineering and Technology Department of Library and Information Centre. Downloaded on October 28,2024 at 07:55:26 UTC from IEEE Xplore.  Restrictions apply. 



  

V. CONCLUSION 

In this research exertion, we have achieved successful 
detection of the extraction phase of Aspergillus Flavus, which 
represents a critical task in our proposed work. By 
implementing a computer-based system, we have not only 
provided a cost-effective preliminary approach to detecting 
color changes but also achieved improved performance ratios. 
To enhance the system's value-added services, we have 
incorporated an automated notification module that 
specifically notifies end-users revealing the extraction stage. 
This integration has significantly reduced the manual effort 

required for sample collection and detection processes. 

One notable limitation of the system is its sensitivity to 
minor variations in green channel values, which can lead to 
inaccuracies in identifying the precise growth stage. To 
address this drawback, future improvements can be made by 
incorporating a neural network learning technique. By 
training the system to recognize even minute changes in the 
green channel, it has the potential to achieve enhanced 
accuracy and performance. This approach would enable the 
system to accurately identify and classify a greater number of 
stages in fungal growth, thereby improving its overall 

capabilities. 

Future work can focus on refining the color detection 
algorithm to address the system's sensitivity to minor green 
channel variations. By integrating neural networks, we can 
significantly enhance the system's accuracy and broaden its 
ability to effectively classify a diverse spectrum of 
Aspergillus Flavus growth stages. The incorporation of such 
cutting-edge technologies empowers the system to make 
precise and comprehensive assessments, contributing to a 
more robust and reliable analysis of the fungus's 
developmental phases. By broadening the scope of value-
added services, rigorously validating on an extensive dataset, 
and fostering collaborations with domain experts, we can 
achieve remarkable enhancements in the system's overall 
performance and practicality. These strategic steps ensure the 
system's ability to address a diverse array of challenges and 
cater to a broader range of applications, making it a valuable 

asset in various domains. 
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