DSPALGORITHMS and ARCHITECTURE

Course Code	: 18EC734	CIE Marks	:40
Lecture Hours/Week	:3	SEE Marks	:60
Total Number of Lecture Hours: 40 (08 Hrs / Module)		Exam Hours	:03
CREDITS-03			

Course Learning Objectives: This course will enable students to:

- Figure out the knowledge and concepts of digital signal processing techniques.
- Understand the computational building blocks of DSP processors and its speed issues.
- Understand the various addressing modes, peripherals, interrupts and pipelining structure of TMS320C54xx processor.
- Learn how to interface the external devices to TMS320C54xx processor in various modes.
- Understand basic DSP algorithms with their implementation.

Module -1

Introduction to Digital Signal Processing:

Introduction, A Digital Signal – Processing System, The Sampling Process, Discrete Time Sequences, Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT), Linear Time-Invariant Systems, Digital Filters, Decimation and Interpolation.

Computational Accuracy in DSP Implementations:

Number Formats for Signals and Coefficients in DSP Systems, Dynamic Range and Precision, Sources of Error in DSP Implementation.

L1,L2

Module -2

Architectures for Programmable Digital Signal – Processing Devices:

Introduction, Basic Architectural Features, DSP Computational Building Blocks, Bus Architecture and Memory, Data Addressing Capabilities, Address Generation Unit, Programmability and Program Execution, Speed Issues, Features for External Interfacing.

L1,L2

Module -3

Programmable Digital Signal Processors:

Introduction, Commercial Digital Signal-processing Devices, Data Addressing Modes of TMS32OC54XX, Memory Space of TMS32OC54xx Processors, Program Control. Detail Study of TMS32OC54X & 54xx Instructions and

Programming, On – Chip Peripherals, Interrupts of TMS32OC54XX Processors, Pipeline Operation of TMS32OC54xx Processor.

L1,L2

Module -4

Implementation of Basic DSP Algorithms:

Introduction, The Q – notation, FIR Filters, IIR Filters, Interpolation and Decimation Filters (one example in each case).

Implementation of FFT Algorithms:

Introduction, An FFT Algorithm for DFT Computation, Overflow and Scaling, Bit – Reversed Index. Generation & Implementation on the TMS32OC54xx.

L1,L2

Module -5

Interfacing Memory and Parallel I/O Peripherals to Programmable DSP Devices:

Introduction, Memory Space Organization, External Bus Interfacing Signals. Memory Interface, Parallel I/O Interface, Programmed I/O, Interrupts and I/O Direct Memory Access (DMA).

Interfacing and Applications of DSP Processors:

Introduction, Synchronous Serial Interface, A CODEC Interface Circuit, DSP Based Bio-telemetry Receiver, A Speech Processing System, An Image Processing System.

L1,L2

Course Outcomes: At the end of this course, students would be able to:

- 1. Comprehend the knowledge and concepts of digital signal processing techniques.
- 2. Apply the knowledge of DSP computational building blocks to achieve speed in DSP architecture or processor.
- 3. Apply knowledge of various types of addressing modes, interrupts, peripherals and pipelining structure of TMS320C54xx processor.
- 4. Develop basic DSP algorithms using DSP processors.
- 5. Discuss about synchronous serial interface and multichannel buffered serial port (McBSP) of DSP device and demonstrate the programming of CODEC interfacing.

Question paper pattern:

- Examination will be conducted for 100 marks with question paper containing 10 full questions, each of 20 marks.
- Each full question can have a maximum of 4 sub questions.
- There will be 2 full questions from each module covering all the topics of the module.

- Students will have to answer 5 full questions, selecting one full question from each module.
- The total marks will be proportionally reduced to 60 marks as SEE marks is 60.

Text Book:

• "Digital Signal Processing", Avatar Singh and S. Srinivasan, Thomson Learning, 2004.

Reference Books:

- 1. "Digital Signal Processing: A practical approach", Ifeachor E. C., Jervis B. W Pearson-Education, PHI, 2002.
- 2. "Digital Signal Processors", B Venkataramani and M Bhaskar, TMH, 2nd, 2010
- 3. "Architectures for Digital Signal Processing", Peter Pirsch John Wiley, 2008