VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI

B.E: Electronics & Communication Engineering / B.E: Electronics & Telecommunication Engineering NEP, Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2021 - 22)

V Semester

1	Digital Communication		
Course Code	21EC51	CIE Marks	50
Teaching Hours/Week (L:T:P:S)	3:0:0:1	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	3	Exam Hours	3

Course objectives:

- Understand the concept of signal processing of digital data and signal conversion to symbols at the transmitter and receiver.
- Compute performance metrics and parameters for symbol processing and recovery in ideal and corrupted channel conditions.
- Understand the principles of spread spectrum communications.
- Understand the basic principles of information theory and various source coding techniques.
- Build a comprehensive knowledge about various Source and Channel Coding techniques.
- · Discuss the different types of errors and error detection and controlling codes used in the communication channel.
- Understand the concepts of convolution codes and analyze the code words using time domain and transform domain approach.

Teaching-Learning Process (General Instructions)

The sample strategies, which the teacher can use to accelerate the attainment of the various course outcomes are listed in the following:

- 1. Lecture method (L) does not mean only the traditional lecture method, but a different type of teaching method may be adopted to develop the outcomes.
- Arrange visits to nearby PSUs such as BHEL, BEL, ISRO, etc., and small-scale communication industries.
- 3. Show Video/animation films to explain the functioning of various modulation techniques, Channel, and source coding.
- 4. Encourage collaborative (Group) Learning in the class
- 5. Ask at least three HOTS (Higher-order Thinking) questions in the class, which promotes critical thinking
- 6. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop thinking skills such as the ability to evaluate, generalize & analyze information rather than simply recall it.
- Topics will be introduced in multiple representations.
- 8. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.

Module-1

Digital Modulation Techniques: Phase shift Keying techniques using coherent detection: generation, detection and error probabilities of BPSK and QPSK, M-ary PSK, M-ary QAM. Frequency shift keying techniques using Coherent detection: BFSK generation, detection and error probability. Non coherent orthogonal modulation techniques: BFSK, DPSK Symbol representation, Block diagrams treatment of Transmitter and Receiver, Probability of error (without derivation of probability of error equation).

Teaching-
Learning
Process

Chalk and talk method, Simulation of modulation techniques, Power Point Presentation, YouTube videos Animation of BPSK, QPSK, BFSK and DPSK.

Problems on Generation and detection of DPSK, QPSK.

Self-study topic: Minimum shift keying and Non-coherent BFSK

RBT Level: L1, L2, L3

Module-2

Signalling Communication through Band Limited AWGN Channels:

Signalling over AWGN Channels- Introduction, Geometric representation of signals, Gram- Schmidt Orthogonalization procedure, Conversion of the continuous AWGN channel into a vector channel (without statistical characterization), Optimum receivers using coherent detection: ML Decoding, Correlation receiver, matched filter receiver.

Signal design for Band limited Channels: Design of band limited signals for zero ISI-The Nyquist Criterion (statement only), Design of band limited signals with controlled ISI-Partial Response signals, Probability of error for detection of Digital PAM: Symbol-by-Symbol detection of data with controlled ISI.

Teaching-Learning Chalk & talk method, PowerPoint Presentation, YouTube videos

Self-study topics: Maximum Likelihood detection, Channel equalization

Process RBT Level: L1, L2, L3

Module-3

Principles of Spread Spectrum: Spread Spectrum Communication Systems: Model of a Spread Spectrum Digital Communication System, Direct Sequence Spread Spectrum Systems, Effect of De-spreading on a narrowband Interference, Probability of error (statement only), Some applications of DS Spread Spectrum Signals, Generation of PN Sequences, Frequency Hopped Spread Spectrum, CDMA based on IS-95.

Teaching-Learning

Chalk & talk method, Seminar about security issues in communication systems

RBT Level: L1, L2, L3

Process

Module-4

Introduction to Information Theory: Measure of information, Average information content of symbols in long independent sequences.

Source Coding: Encoding of the Source Output, Shannon's Encoding Algorithm, Shannon-Fano Encoding Algorithm, Huffman coding.

Error Control Coding: Introduction, Examples of Error control coding, methods of Controlling Errors, Types of Errors, types of Codes.

Teaching-

Chalk and talk method, Problems on source coding, error control codes

Learning Process RBT Level: L1, L2, L3

Module-5

Linear Block Codes: Matrix description of Linear Block Codes, Error Detection & Correction capabilities of Linear Block Codes, Single error correction Hamming code, Table lookup Decoding using Standard Array.

Convolution codes: Convolution Encoder, Time domain approach, Transform domain approach, Code Tree, Trellis and State Diagram.

Teaching-Learning Process Chalk and talk method, Animation of convolution encoders

RBT Level: L1, L2, L3

Course outcomes (Course Skill Set)

At the end of the course the student will be able to:

- 1. Analyze different digital modulation techniques and choose the appropriate modulation technique for the given specifications.
- 2. Test and validate symbol processing and performance parameters at the receiver under ideal and corrupted bandlimited channels.
- Differentiate various spread spectrum schemes and compute the performance parameters of communication system.
- 4. Apply the fundamentals of information theory and perform source coding for given message
- 5. Apply different encoding and decoding techniques with error Detection and Correction.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

Three Unit Tests each of 20 Marks (duration 01 hour)

- First test at the end of 5th week of the semester
- Second test at the end of the 10th week of the semester
- 3. Third test at the end of the 15th week of the semester

Two assignments each of 10 Marks

- 4. First assignment at the end of 4th week of the semester
- 5. Second assignment at the end of 9^{th} week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for 20

Marks (duration 01 hours)

 At the end of the 13th week of the semester The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks

and will be scaled down to 50 marks (to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (duration 03 hours)

- The question paper will have ten questions. Each question is set for 20 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.

The students have to answer 5 full questions, selecting one full question from each module. Marks scored out of 100 shall be proportionally reduced to 50 marks

Suggested Learning Resources:

Text Books:

- 1. Simon Haykin, "Digital Communication Systems", John Wiley & sons, First Edition, 2014, ISBN 978-0-471-64735-5.
- 2. John G Proakis and Masoud Salehi, "Fundamentals of Communication Systems", 2014 Edition, Pearson Education, ISBN 978-8-131-70573-5.
- 3. K Sam Shanmugam, "Digital and analog communication systems", John Wiley India Pvt. Ltd, 1996.
- Hari Bhat, Ganesh Rao, "Information Theory and Coding", Cengage, 2017.
- Todd K Moon, "Error Correction Coding", Wiley Std. Edition, 2006.

Reference Books:

- Bernard Sklar, "Digital Communications Fundamentals and Applications", Second Edition, Pearson Education, 2016, ISBN: 9780134724058.
- K Sam Shanmugam, "Digital and analog communication systems", John Wiley India Pvt. Ltd, 1996.

Web links and Video Lectures (e-Resources)

https://nptel.ac.in/courses/108102096