| Fundamentals of Virtual Reality | | Semester | III | |---------------------------------|---------|-------------|-----| | Course Code | BAG358B | CIE Marks | 50 | | Teaching Hours/Week (L:T:P: S) | 0:2:0:0 | SEE Marks | 50 | | Total Hours of Pedagogy | 30 | Total Marks | 100 | | Credits | 01 | Exam Hours | 01 | | Examination nature (SEE) | Theory | | | ## **Course objectives:** - Describe how VR systems work and list the applications of VR. - Understand the design and implementation of the hardware that enables VR systems to be built. - Understand the system of human vision and its implication on perception and rendering. - Explain the concepts of motion and tracking in VR systems. - Describe the importance of interaction and audio in VR systems ### Teaching-Learning Process (General Instructions) These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes. - Adopt different types of teaching methods to develop the outcomes through PowerPoint presentations and Videodemonstrations or Simulations. - Chalk and Talk method for Problem Solving. - Adopt flipped classroom teaching method. - Adopt collaborative (Group Learning) learning in the class. - Adopt Problem Based Learning (PBL), which fosters students' analytical skills and develops thinking skills such asevaluating, generalizing, and analysing information. #### Module-1 Introduction to Virtual Reality: Defining Virtual Reality, History of VR, Human Physiology and Perception, Key Elements of Virtual Reality Experience, Virtual Reality System, Interface to the Virtual World-Input & output- Visual, Aural & Haptic Displays, Applications of Virtual Reality. #### Module-2 **Representing the Virtual World :** Representation of the Virtual World, Visual Representation in VR, AuralRepresentation in VR and Haptic Representation in VR #### Module-3 **The Geometry of Virtual Worlds &The Physiology of Human Vision:** Geometric Models, Changing Position and Orientation, Axis-Angle Representations of Rotation, Viewing Transformations, Chaining the Transformations, Human Eye, eye movements & implications for VR. #### Module-4 Visual Perception & Rendering: Visual Perception - Perception of Depth, Perception of Motion, Perception of Color, Combining Sources of Information Visual Rendering -Ray Tracing and Shading Models, Rasterization, Correcting Optical Distortions, Improving Latency and Frame Rates #### Module-5 **Motion & Tracking :** Motion in Real and Virtual Worlds- Velocities and Accelerations, The Vestibular System, Physics in the Virtual World, Mismatched Motion and Vection Tracking-Tracking 2D & 3D Orientation, Tracking Position and Orientation, Tracking Attached Bodies ## Course outcome (Course Skill Set) At the end of the course the student will be able to: CO1: Describe how VR systems work and list the applications of VR. CO2: Understand the design and implementation of the hardware that enables VR systems to be built. CO3: Understand the system of human vision and its implication on perception and rendering. CO4: Explain the concepts of motion and tracking in VR systems. CO5: Describe the importance of interaction and audio in VR systems. #### Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. ## Continuous Internal Examination (CIE) - For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks. - The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered - Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. - For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment. Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. #### Semester End Examinations (SEE) SEE paper shall be set for 50 questions, each of 01 mark. The pattern of the question paper is MCQ (multiple choice questions). The time allotted for SEE is **01 hour.** The student has to secure a minimum of 35% of the maximum marks meant for SEE. ## **Suggested Learning Resources:** #### **Books** - 1. Virtual Reality, Steven M. LaValle, Cambridge University Press, 2016 - 2. Understanding Virtual Reality: Interface, Application and Design, William R Sherman and Alan B Craig, (The Morgan Kaufmann Series in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 - 3. Developing Virtual Reality Applications: Foundations of Effective Design, Alan B Craig, William R Sherman and Jeffrey DWill, Morgan Kaufmann, 2009. ## Reference Books: - 1. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. - 2. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", Addison Wesley, USA, 2005. - 3. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. ## Web links and Video Lectures (e-Resources): http://lavalle.pl/vr/book.html https://nptel.ac.in/courses/106/106/106106138/https://www.coursera.org/learn/introduction-virtual-reality. # Activity Based Learning (Suggested Activities in Class)/ Practical Based learning Course seminars Dept. of Agricultural Engineering Alva's Institute of Engg & Technology Mijar, Moodubidire - 574225