SUSTAINABLE A	GRICULTURE AND FOOD S	ECURITY (OEC-I)	
Course Code	21AG653	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	(3:0:0:0)	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	03

Course Objectives:

 To study the importance of sustainable agriculture for the growing population, various resources required and their sustainability Importance of science, food security and ecological balance

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Adopt different types of teaching methods to develop the outcomes through PowerPoint presentations and Video demonstrations or Simulations.
- 2. Chalk and Talk method for Problem Solving.
- 3. Arrange visits to show the live working models other than laboratory topics.
- 4. Adopt collaborative (Group Learning) Learning in the class.
- 5. Adopt Problem Based Learning (PBL), which fosters students Analytical skills and develops thinking skills such as evaluating, generalizing, and analyzing information.
- 6. Conduct Laboratory Demonstrations and Practical Experiments to enhance experiential skills.

Module-1

LAND RESOURCE AND ITS SUSTAINABILITY: Land Resources of India, Population and land, Land utilization, Net Area Sown, changes in cropping pattern, land degradation.

	Area Sown, changes in cropping pattern, land degradation.		
Teaching- 1. PowerPoint Presentation		1. PowerPoint Presentation	
	Learning	2. Chalk and Talk are used for Problem Solving (In-general)	
-			
		4. Laboratory Demonstrations and Practical Experiments	
- 1			

Module-2

WATER RESOURCE AND ITS SUSTAINABILITY: Rainfall forecasting - Adequacy of Rainfall for crop growth – Rainfall, Drought and production instability – Irrigation potential – Available, created and utilized – River basins; Watersheds and Utilizable surface water – Utilizable water in future (Ground water & Surface water)

Teaching-Learning Process

- 1. PowerPoint Presentation
- 2. Chalk and Talk are used for Problem Solving (In-general)
- 3. Video demonstration or Simulations
- 4. Laboratory Demonstrations and Practical Experiments

Module-3

SUSTAINABLE AGRICULTURE & ORGANIC FARMING: Agro-ecosystems - Impact of climate change on Agriculture, Effect on crop yield, effect on Soil fertility - Food grain production at State Level - Indicators of Sustainable food availability - Indicators of food production sustenance - Natural farming principles - Sustainability in rainfed farming - organic farming - principles and practices.

Teaching-Learning

- 1. PowerPoint Presentation
- 2. Chalk and Talk are used for Problem Solving (In-general)
- **Process** 3. Video demonstration or Simulations
 - 4. Laboratory Demonstrations and Practical Experiments

Module-4

FOOD PRODUCTION AND FOOD SECURITY: Performance of Major Food Crops over the past decades – trends in food production – Decline in total factor productivity growth – Demand and supply projections – Impact of market force – Rural Land Market – Emerging Water market – Vertical farming - Sustainable food security indicators and index – Indicator of sustainability of food Security – Path to sustainable development.

Teaching-

- 1. PowerPoint Presentation
- Learning Process
- 2. Chalk and Talk are used for Problem Solving (In-general)
- 3. Video demonstration or Simulations
- 4. Laboratory Demonstrations and Practical Experiments

Module-5

POLICIES AND PROGRAMMES FOR SUSTAINABLE AGRICULTURE AND FOOD SECUIRTY

Food and Crop Production polices – Agricultural credit Policy – Crop insurance –Policies of Natural Resources Use – Policies for sustainable Livelihoods – Virtual water and trade - Sustainable food Security Action Plan.

Teaching-Learning Process

- 1. PowerPoint Presentation
- 2. Chalk and Talk are used for Problem Solving (In-general)
- 3. Video demonstration or Simulations
- 4. Laboratory Demonstrations and Practical Experiments

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

- 1. Gain knowledge on the need for sustainable agriculture
- 2. Comprehend the need for food security on global level and the Nutritional Security.
- 3. Demonstrate how ecological balance is required for sustainability of agriculture.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation:

Three Unit Tests each of 20 Marks (duration 01 hour)

- 1. First test at the end of 5th week of the semester
- 2. Second test at the end of the 10^{th} week of the semester
- 3. Third test at the end of the 15^{th} week of the semester

Two assignments each of 10 Marks

- 4. First assignment at the end of 4th week of the semester
- 5. Second assignment at the end of 9th week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for 20 Marks (duration 01 hours)

6. At the end of the 13^{th} week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be scaled down to 50 marks

(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (duration 03 hours)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 1. B.K.Desai and Pujari, B.T. Sustainable Agriculture : A vision for future, New India Publishing Agency, New Delhi, 2007.
- 2. Saroja Raman, Agricultural Sustainability Principles, Processes and Prospects, CRC Press, 2013
- 3. Swarna S.Vepa etal., Atlas of the sustainability of food security. MSSRF, Chennai, 2004.
- 4. Sithamparanathan, J., Rengasamy, A., Arunachalam, N. Ecosystem principles and sustainable agriculture, Scitech Publications, Chennai, 1999.
- 5. Gangadhar Banerjee and Srijeet Banerji, Economics of sustainable agriculture and alternate production systems, Ane Books Pvt Ltd., 2017
- 6. M.S.Swaminathan, Science and sustainable food security, World Scientific Publishing Co., Singapore, 2010.

Web links and Video Lectures (e-Resources):

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
- Seminars
- Mini Projects

H.O.D.

Dept. of Agricultural Engineering Alva's Institute of Engg. & Technology Mijar, Moodubidire - 574225