	THERMAL ENGINEERING		
Course Code	21AG53	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	03

Course objectives:

- · Understand the basic principle of refrigeration and air conditioning
- Study various refrigeration cycles and evaluate performance using Mollier charts or refrigerant property tables.
- Learn about the Vapour absorption system and Steam jet refrigeration
- · Know the Psychrometric Properties and Processes
- Familiarize with Air Conditioning Systems and Distribution of Air

Teaching-Learning Process (General Instructions)

These are sample strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- Adopt different types of teaching methods to develop the outcomes through PowerPoint presentations and Video demonstrations or Simulations.
- 2. Chalk and Talk method for Problem Solving.
- 3. Adopt flipped classroom teaching method.
- 4. Adopt collaborative (Group Learning) learning in the class.
- 5. Adopt Problem Based Learning (PBL), which fosters students' analytical skills and develops thinking skills such as evaluating, generalizing, and analysing information.

MODULE-1

Gas Power Cycles: Air standard cycles; Carnot, Otto, Diesel, Dual and Stirling cycles, p-v and T -s diagrams, description, efficiencies and mean effective pressures. Multi cylinder Engines testing, Morse test.

Air Compressors: Operation of a single stage reciprocating compressors: work input through p-v diagram, effect of clearance and volumetric efficiency, adiabatic, isothermal and mechanical efficiencies. Multi-stage compressor, saving in work, optimum intermediate pressure, inter-cooling, minimum work for compression.

Teaching-	1. Power-point Presentation,
Learning	2. Video demonstration or Simulations,
Process	3. Chalk and Talk are used for Problem Solving./White board
MODULE-2	

Ideal gases: Ideal gas mixtures, Daltons law of partial pressures, Amagat's law of additive volumes, evaluation of properties of perfect and ideal gases, Air- Water mixtures and related properties.

Real gases – Introduction, Van-der Waal's Equation of state, Van-der Waal's constants in terms of critical properties, Beattie-Bridgeman equation, Law of corresponding states, compressibility factor; compressibility chart. Difference between Ideal and real gases.

Teaching-	. 1. Power-point Presentation,
Learning	2. Video demonstration or Simulations,
Process	3. Chalk and Talk are used for Problem Solving./White board
MODULE-3	

Refrigeration: Vapour compression refrigeration system; description, analysis, refrigerating effect, capacity, power required, units of refrigeration, COP, reversed Carnot cycle, vapour absorption refrigeration system and Air refrigeration system. Use of refrigeration tables and p-h chart. Classification of Refrigerants. Desirable properties of refrigerants.

Psychrometrics and Air-Conditioning Systems: Atmospheric air and Psychrometric properties: DBT, WBT, DPT, partial pressure, specific and relative humidity and relation between the enthalpy and adiabatic saturation temperatures. Construction and use of psychrometric chart. Analysis of various processes: Heating, cooling, dehumidifying and humidifying. Adiabatic mixing of stream of moist air. Analysis of summer and winter airconditioning systems.

Teaching-	1. Power-point Presentation,
Learning	2. Video demonstration or Simulations,
Process	3. Chalk and Talk are used for Problem Solving./White board
	MODULE-4

Introduction to Turbo machines: Classification of Turbomachines, Basic constructional details, Euler's equation for a Turbo machine, Impulse & Reaction machine - Axial flow and radial flow machines, utilization factor, degree of reaction & efficiencies of Turbo machines,

Introduction to positive displacement machines: Classification, comparison with turbomachines. Construction and working of reciprocating pump, gear and vane pumps,

and working of reciprocating pump, gear and vane pumps,		of reciprocating pump, gear and vance pumps,
		1. Power-point Presentation,
	Learning	2. Video demonstration or Simulations,
	Process	3. Chalk and Talk are used for Problem Solving./White board
1		MODULE 5

Centrifugal Pumps: Main Parts of centrifugal pump, basic terms and definitions, work done, minimum speed for starting centrifugal pump, Classifications- Performance characteristics of centrifugal pumps, Cavitation in pumps and NPSH.

Centrifugal Blowers & Compressors: Centrifugal blower; types; size & speed; vane shape & efficiency; vane shape

-	Centrilugal bi	owers & compressors, centinger blower, experience of slin and slin coefficient	
1		& characteristics; actual performances characteristics; Concept of slip and slip coefficient	
Ī			
	Learning	2. Video demonstration or Simulations,	
	Process	3. Chalk and Talk are used for Problem Solving./White board	
-	Teaching- Learning	 Power-point Presentation, Video demonstration or Simulations, Chalk and Talk are used for Problem Solving./White board 	

Course outcomes (Course Skill Set):

At the end of the course the student will be able to:

- Apply thermodynamic concepts to analyse the performance of gas power cycles
- Understand the working principle of Air compressors
- Recognize differences between ideal and real gases and evaluate thermodynamic properties of ideal and real gas mixtures using various relations.
- Analyze air-conditioning processes using the principles of psychometry and Evaluate cooling and heating loads in an air-conditioning system.
- Able to give precise definition of turbomachinery and identify various types of turbo machinery.
- Understand the principle of operation of pumps, fans, compressors and turbines.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50)in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

Three Unit Tests each of 20 Marks (duration 01 hour)

- 1. First test at the end of 5th week of the semester
- 2. Second test at the end of the 10th week of the semester
- 3. Third test at the end of the 15th week of the semester

Two assignments each of 10 Marks

- 4. First assignment at the end of 4th week of the semester
- 5. Second assignment at the end of 9th week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for 20 Marks

(duration 01 hours)

6. At the end of the 13th week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be scaled down to 50 marks

(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (duration 03 hours)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.

The students have to answer 5 full questions, selecting one full question from each module.

Suggested Learning Resources:

Books

- 1. Refrigeration and Air conditioning, C.P. Arora & Domkundwar, McGraw Hill, 3rd edition, 2010.
- 2. Refrigeration and Air conditioning, R.S. Khurmi, S. Chand Publishers, .5th edition, 2006
- 3. Principles of Refrigeration, Roy J. Dossat, Pearson Education Asia, 4th edition, 2009.
- 4. Refrigeration and Air Conditioning, Stoecker, W.F. and Jones J. W., McGraw Hill, 2nd edition, 1982.
- 5. Ashrae Handbook: Refrigeration, American Society of Heating, Refrigerating and Air- Conditioning Engineers, Har/Cdr edition, 2010
- 6. Air conditioning engineering, Jones W.P., Elsevier Butterworth-Heinemann, 5thedition, 2001.

Web links and Video Lectures (e-Resources):

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

Dept. of Agricultural Engineering Alva's Institute of Engg. & Technology Mijar, Moodubidire - 574225

HOD.