

(A Unit of Alva's Education Foundation)
Shobhavana Campus, Mijar-574225, Moodbidri, D.K,
Affiliated to VTU Belagavi and Approved by AICTE, New Delhi
(Accredited by NAAC with A+ Grade)

CALENDAR OF EVENTS (B.E. EVEN/ MBA ODD SEMESTER 2023-24)

VISION

"Transformative education by pursuing excellence in Engineering and Management through enhancing skills to meet the evolving needs of the community"

MISSION

- To bestow quality technical education to imbibe knowledge, creativity and ethos to students community.
- To inculcate the best engineering practices through transformative education.
- To develop a knowledgeable individual for a dynamic industrial scenario.
- To inculcate research, entrepreneural skills and human values in order to cater the needs of the society.

AIFFU	MACNITU				DAYS				ACTIVITIES
WEEK	MONTH	MON	TUE	WED	THU	FRI	SAT	SUN	Activities
01		1	2	3	4	5	6	7	
02		8	9	10	11	12	13	F14	14: Makara Sankranti
03	JANUARY 2024	15	16	17	18	19	20	21	26: Republic Day 30-31: Student Mentoring
04	2024	22	23	24	25	ZE.	27	28	30-31: Student Mentoring
05		29	30	31				May 1	
06					1	2	3	4	
07		5	6	7	8	9	10	11	7: Commencement of I Semester MBA
80	FEBRUARY 2024	12	13	14	15	16	17	18	12: Commencement of VIII Semester
09	2024	19	20	21	22	23	24	25	28-29: Student Mentoring
10		26	27	28	29				
11						1	2	3	6: Commencement of II Semester
12		4	5	6	7	8	9	10	8: Maha Shivaratri 9: Last Working Day of V Semester
13	MARCH 2024	11	12	13	14	15	16	17	25-26: CIE Test - I for VIII Semester
14	2024	18	19	20	21	22	23	24	26-28: CIE Test – I for I Semester MBA 27-28: Student Mentoring
15		25	26	27	28	29	30	31	29:Good Friday
16		1	2	3	4	5	6	7	9: Yugadi
17		8		10	11	12	13	14	11: Ramadan 15: Commencement of IV Semester
18	APRIL 2024	15	16	17	18	19	20	21	20-24: CIE Test – I for II Semester
19	2024	22	23	24	25	26	27	28	20-22: CIE Test – II for VIII Semester 24-26: CIE Test – II for I Semester MBA
20		29	30					2 8	29-30: Student Mentoring
21				BL.	2	3	4	5	1: May Day 9-11: CIE Test – III for VIII Semester
22		6	7	8	9	0.18	11	12	10: Basava Jayanthi/ Akshaya Trithiya
23	MAY	13	14	15	16	17	18	19	11: Last Working Day of VIII Semester 23-25: CIE Test – III for I Semester MBA
24	2024	20	21	22	23	24	25	26	24-27: CIE Test – I for IV Semester
25		27	28	29	30	31			29: Last Working Day of I Semester MB 30-31: Student Mentoring
26							1	2	
27		3	4	5	6	7	8	9	15-20: CIE Test – II for II Semester
28	JUNE	10	11	12	13	14	15	16	17: Bakrid 22-25: CIE Test – II for IV Semester
29	2024	W.Car	18	19	20	21	22	23	27-28: Student Mentoring 29: Last Working Day of II Semester
30	1	24	25	26	27	28	29	30	25. Last Warking Day of It semester
31		1	2	3	4	5	6	7	
32	JULY	8	9	10	11	12	13	14	17: Muharram 20-23: CIE Test – III for IV Semester
33	2024	15	16		18	19	20	21	25-26: Student Mentoring
34	1	22	23	24	25	26	27	28	27: Last Working Day of IV Semester

Shobhavana Campus, Mijar, Moodbidri, D.K - 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF AGRICULTURE ENGINEERING

Time Table even Semester 2023-24 (w.e.f 29/04/2024)

Academ	la Mana			-			Cla				
Academ	ic Year	Scheme	seme Semester		Section	Cla Coord		Room No			
2023	-24	2022		4	A		Dr. Surajit Deb Barma		501		
Time Day	9.00 9.50 10.40 To To To To 11.00		11.00 To 11.50	11.50 To 12.40	12.40 To 1.40	1.40 To 2.30	2.30 To 3.20	3.30 To 5.00			
MONDAY	TFM (VMB)	TAE (SK)		LIB/MINI Project	UHV (SK)		APE LAB (KR)				
TUESDAY	IDA (SDB)		TAE (SK)	APE (KR)		TFM (VMB)		B.E (PK)		
WEDNESDAY	TSC	(KR)	B R E	TFM (VMB)	APE (KR)	L U N		MD (KCH/KR)			
THURSDAY	TAE (SK)	APE (KR)	A K	APT (VMB)			TAE LAB (SK)				
ALDAY	TFM (VMB)	TSC (KR)		TAE (SK)	APE (KR)		MD (KC	H/KR)	P.E/NSS/Yoga Mentoring		
SATURDAY	TSC (KR)	TFM (VMB)		TAE (SK)	APE (KR)				1		

Allocation of Courses

			COURSE TITLE	FACULTY NAME	FACULTY CODE
PCC	FFM	BAG401	Thermodynamics & Fluid Mechanics	Dr. Vinuta M Betageri	VMB
IPCC	TAE	BAG-402	Tractor & Automotive Engines	Dr. Shashikumar	SK
IPCC	APE	BAG403	Agricultural Process Engineering	Dr. K.Raju Yadav	KR
PCCL	MD	BAGL404	Machine drawing and GD & T lab	Prof Kiran CH/ Dr. K. Raju Yadav	SP/KR
ESC	TSC	BAG405A	Tractor Systems and Coutrols	Dr. K.Raju Yadav	KR
AEC/ SEC	IDA	BAGL456C	Introduction to Data Analytics	Dr. Surajit Deb Barma	SDB
2	BE	ввок407	Biology for Engineers	Dr. Prasanth Donkar	PD
	UHV	BUHK408	Universal Human values Course	Dr. Shashikumar	SK
	APT		Aptitude	Dr. Vinuta M Betageri	VMB

PCC: Professional Core Course, PCCL: Professional Core Course laboratory, UHV: Universal Human Value Course, SC(IC): Applied Science Course, ESC: Engineering Science Course, ETC: Emerging Technology Course, PLC: Programming Language Course, AEC: Ability Enhancement Course, SEC: Skill Enhancement Course, HSMC: Humanity & Social Science and Management Course, SDC: Skill Development Course

Time Table Coordinator

H.O.D

Dean (Academics)

PrincipalPAL

H.O.D.

Dept. of Agricultural Engineering
Alva's Institute of Engg. & Technology
Mijar, Moodubidire - 574225

Nove's institute of Lagy. & Technology Miger. 19000081091 - 574 275, D.A.

Shobhavana Campus, Mijar, Moodabidri, Mangalore Taluk, D.K - 574225 Phone: 08258-262725, Fax: 08258-262726

DEPARTMENT OF AGRICULTURE ENGINEERING

INDIVIDUAL TIMETABLE (EVEN SEMESTER 2023-24)

Name of the l	Faculty	Dr. K. R	aju Y	adav (K	R)		With E	ffect Fron	n: 29-04-2 0	24
Period	1	2		3	4		5	6	7	No.
Time Day	09.00 -09.50	09.50 - 10.40		11.00- 11.50	11.50- 12.40	L	1.40- 2.30	2.30- 3.20	3.20- 5.00	of Unit s
Monday			T E		LIB	U N	APE LAE	3 (4 SEM)		4
Tuesday			В		APE (4 SEM)	C H	GATE (K)	MINI PROJECT		5
Wednesday	TSC	(4 SEM)	R E		APE (4 SEM)	B R		MD (4 SE	M)	6 ·
Thursday		APE (4 SEM)	A K			E A K			2	
Friday		TSC (4 SEM)			APE (4 SEM)	, n	MD	(4 SEM)		6
Saturday	TSC (4 SEM)				APE (48EM)					4

Other Activities: CLASS COORDINATOR, TIMETABLE COORDINATOR, ERP COORDINATOR, DEPARTMENT MENTORSHIP, NPTL COORDINATOR, EDC COORDINATOR, IA COORDINATOR, NSS COORDINATOR, JAGRUTHI MENTORSHIP, NAAC COORDINATOR, NBA CRITERIA 8 COORDINATOR

Total Units* 30

* EXCLUDING OTHER ACTIVITIES

PARTICULARS	HOURS	TOTAL HOURS	TOTAL UNITS
THOERY	11	22	22
LAB	2+3+2+1	8	8
OTHERS			30

Coordinator

HOD

H.O.D.

AGRICULTURAL PROCESS ENGINEERING											
Course Code	BAG403	CIE Marks	50								
Teaching Hours/Week (L:T:P: S)	(4:0:0:0)	SEE Marks	50								
Total Hours of Pedagogy	40 hours Theory + 8-10 Lab slots	Total Marks	100								
Credits	04	Exam Hours	03								
Examination nature (SEE)	eory										

Course Objectives:

- To train the students on unit operations of agricultural process engineering
- To acquaint with the engineering properties of agricultural materials
- Enable the students to understand the concepts of cleaning of cereals, size reduction and rice milling

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Adopt different types of teaching methods to develop the outcomes through PowerPoint presentations and Video demonstrations or Simulations.
- 2. Chalk and Talk method for Problem Solving.
- 3. Arrange visits to show the live working models other than laboratory topics.
- 4. Adopt collaborative (Group Learning) Learning in the class.
- 5. Adopt Problem Based Learning (PBL), which fosters students Analytical skills and develops thinking skills such as evaluating, generalizing, and analyzing information.
- 6. Conduct Laboratory Demonstrations and Practical Experiments to enhance experiential skills.

Module-1

8 HOURS

Physical characteristics of different food grains: fruits and vegetables – importance, Shape and size – criteria for describing shape and size, Roundness and sphericity – Volume and density – Specific gravity – Bulk density Porosity – surface area.

Rheology – basic concepts, ASTM standard definition of terms, Rheological Properties – Force deformation behavior, stress and strain behavior, Visco elasticity – time effects, Rheological models - Kelvin and Maxwell models, electrical equivalence of mechanical models.

Module-2

8 HOURS

Frictional Properties: Friction in agricultural materials – measurement – rolling resistance – angle of internal friction and angle of repose, Aerodynamics of agricultural products – drag coefficient and terminal velocity. **Electrical properties** – Di electrical properties, Thermal Properties – specific heat – thermal conductivity-thermal diffusivity. Application of engineering properties in handling and processing equipment.

Module-3

O HOUD

Theory of separation: Types of separators, Cyclone separators, Size of screens applications, Separator based on length, width and shape of the grains, specific gravity, density, Air-screen grain cleaner principle and types, Design considerations of air screen grain cleaners, Sieve analysis-particle size determination, Ideal screen and actual screen– effectiveness of separation and related problems, Pneumatic separator, Cleaning and separation equipment's.

Module-4

8 HOURS

Scope and importance of crop processing: Principles and methods of food processing- cleaning and grading of cereals, Size reduction –principle of comminution/ size reduction, mechanisms of comminution of food, particle shape, average particle size, Characteristics of comminuted products, crushing efficiency, Determination and designation of the fineness of ground material, screen analysis, Empirical relationships (Rittinger_s, Kick_s and Bond_s equations), Work index, energy utilization, Size reduction equipment – Principal types, crushers (jaw crushers, gyratory, smooth roll), Hammer mills, Attrition mills, Burr mill, Tumbling mills, Action in tumbling mills, Size reduction equipment – Ultra fine grinders (classification hammer mills, colloid mill), Cutting machines.

Module-5

8 HOURS

Milling - Rice milling: Principles and equipments, Paddy parboiling methods and equipment, Wheat milling, Milling of Pulses, wet millig, dry milling and milling efficiency. Theory of filtration, Rate of filtration, Applications, Constant rate filtration and Constant-pressure filtration derivation of equation, Filtration equipment, Plate and frame filter press, Rotary filters and tubular filters.

PRACTICAL COMPONENT OF IPCC (May cover all / major modules)

Sl.NO	and findly cover any major modules)
	Experiments
1	Preparation of flow charts and layout of a food processing plant
2	Mixing index and study of mixers
3	Determination of fineness modulus and uniformity index
4	Determination of mixing index of a feed mixer
5	Determination of the efficiency of cyclone separator
6	Tutorial on use of psychometric chart
7	Tutorial on power requirement in size reduction of grain using Ratzinger's law, Kicks law and Bond's law
8	Performance evaluation of hammer mill and attribution mill.
9	Separation behaviour in pneumatic separation

Course outcomes (Course Skill Set):

At the end of the course the student will be able to:

- Be proficient in the scope of the process engineering and the use of processing machinery
- Understand the physical properties, rheological properties and frictional properties of agricultural materials
- Summarising the thermal properties, electrical properties and the terms related to the machine design aspects
- Some of the basic concepts related to cleaning and size reduction equipments
- To acquaint the students with the milling of rice, parboiling technologies and milling of pulses and oil seeds
- Understand the filtration equipments

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CIE for the theory component of the IPCC (maximum marks 50)

- IPCC means practical portion integrated with the theory of the course.
- CIE marks for the theory component are 25 marks and that for the practical component is 25 marks.
- 25 marks for the theory component are split into 15 marks for two Internal Assessment Tests (Two Tests, each of 15 Marks with 01-hour duration, are to be conducted) and 10 marks for other assessment methods mentioned in 220B4.2. The first test at the end of 40-50% coverage of the syllabus and the second test after covering 85-90% of the syllabus.
- Scaled-down marks of the sum of two tests and other assessment methods will be CIE marks for the theory component of IPCC (that is for 25 marks).
- The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of IPCC.

CIE for the practical component of the IPCC

- 15 marks for the conduction of the experiment and preparation of laboratory record, and 10 marks
 for the test to be conducted after the completion of all the laboratory sessions.
- On completion of every experiment/program in the laboratory, the students shall be evaluated
 including viva-voce and marks shall be awarded on the same day.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous

- evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to **15 marks**.
- The laboratory test (duration 02/03 hours) after completion of all the experiments shall be conducted for 50 marks and scaled down to 10 marks.
- Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for 25 marks.
- The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of the IPCC.

SEE for IPCC

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.
- 4. Marks scored by the student shall be proportionally scaled down to 50 Marks
 - The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper may include questions from the practical component.
 - The minimum marks to be secured in CIE to appear for SEE shall be the 12 (40% of maximum marks-30) in the theory component and 08 (40% of maximum marks -20) in the practical component. The laboratory component of the IPCC shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included. The maximum of 04/05 questions to be set from the practical component of IPCC, the total marks of all questions should not be more than the 20 marks.
 - SEE will be conducted for 100 marks and students shall secure 35% of the maximum marks to qualify in the SEE. Marks secured will be scaled down to 50.

Suggested Learning Resources:

Books

- Unit Operations of Agricultural Processing, Sahay KM and Singh KK 1994, Vikas Publishing House Pvt. Ltd., New Delhi.
- 2. Post Harvest Technology of Cereals, Pulses and oil seeds, Chakraverty A 1988. Oxford and IBH Publishing Co. Ltd., Calcutta.
- 3. Unit Operations of Chemical Engineering, McCabe WL, Smith JC and Harriott P 2017 McGraw-Hill Book Co., Boston.
- 4. Transport Processes and separation Process Principle, Geankoplis C J 2015 Prentice-Hall Inc., New Jersey.
- 5. Unit operations in Food processing, Earle R L 1983. Pergamon Press, New York
- 6. file:///C:/Users/DELL/Downloads/AlabmanualonAgriculturalProcessingandStructures.pdf
- 7. Post Harvest Technology of Cereals, Pulses and oil seeds, Chakraverty A 1988. Oxford and IBH Publishing Co. Ltd., Calcutta.

Web links and Video Lectures (e-Resources):

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
- Seminars

(A Unit of Alva's Education Foundation)

Shobhavana Campus, Mijar-574225, Moodbidri, D.K

Phone: 08258-262725, Fax: 08258-262726

Affiliated to VTU Belagavi and Approved by AlCTE, New Delhi, Recognized by Govt. of Karnataka

ATTENDANCE BOOK

Academic Year	. 2023 – 2024
Semester	:A
Period of the Semester	: From 15/4/2014 to 27/7/24
Subject with Code	. AGRICULTURAL PROCESS ENGINEERING (BAG403)
Name of the Faculty	DR K. RAJU YADAV
Department	. AGRICULTURAL ENGINEERING

VISION OF THE INSTITUTE

"Transformative education by pursuing excellence in Engineering and Management through enhancing skills to meet the evolving needs of the community"

MISSION OF THE INSTITUTE

- To bestow quality technical education to imbibe knowledge, creativity and ethos to students community.
- To inculcate the best engineering practices through transformative education.
- To develop a knowledgeable individual for a dynamic industrial scenario.
- To inculcate research, entrepreneurial skills and human values in order to cater the needs of the society.

VISION OF THE DEPARTMENT

To serve the country by producing high caliber technocrate who can combine farming with engineering and technology intorventions and contribute to global food security and scutainable growth in agricultural production

MISSION OF THE DEPARTMENT

M1: To impact knowledge by establishing an environment that is conductive to teaching and learning.

M2: To wate agricultural engineers who are both technically projected and morally admirable in order to benefit

M3: To duulop and enhance novel technologies to address current and foreseable issues in agriculture.

	Be projecient en the scope cythe processing? ruing and use of procuning machinary
CO2	understand the physical properties ruled worked properties and inctional properties summerizing the thermal properties. Electrical properties and them terms related to the fire
	world properties and inchance properties
CO3	cal properties and them terms selected to the His
CO4	some of the boyic while site and chinain
	drying and size reduction Equipments.
CO5	to acquaint the student with milling
	ay sice paro boiling termougies + milling of
CO6	angestano feu matinal handling fi
	transportation squipment

COURSE OUTCOMES

			-			10,	PUB	PO9	PO10	PO11	PO12	PSG1	P802	PROS	P804
2						2				-				700,01	180
				2	2	-	2					-			
	2.	2	2	2	2	2	2	2	-			-		1	2
2	2	2	2	2	2	2	2						2	1	2_
			2								2	1	1		1
2	2								2	2		1	١		
	2	. 2 2 2	. 2 2 2 2 2	. 2 2 2	2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2

AIET		Lesson Pla	n & Ex	ecution		Format Issue N Rev. No	0. 01	D 08			
Name of	the faculty		Dr. K. Raju yadav								
Semeste	r and Secti	on	Tuth & A section								
Date of C	Commence	ment	29/4/24								
Last Wor	king Day o	f the Semester	78/24								
Source M	Naterials Lis	st									
1. 50	ahay 1	CM & Singh KK	Un	it open	ration f.	Agrica	loward	Proces			
0		verty.	post	Harvest	- technology	1 core	المرا كال	المناه الم			
2		plsc			ery & separ	1					
4.	l e	R L		,	exation ?			1			
5		(m. 19)									
Subject N	ame #	tgricultur.	a l	proc	ess En	gine					
Period	Date	Plan Topics to be covered	ed	Source Material needed	Topics Cov		Date	Source Material Referred			
4	30/4	Introduction to unit operation	in in	3	Introduce to renit	tien operation	30/4	3			
2		stoucture of paddy & when)	structu paddy to grain	ve J hedr	2)5)24	1			
3	8/5/29	of food good	nes	2	phynical of food o	property	8/5	S			
4	95/2A	Fiw challs Rheology	1	3	Flow ch	ast	9/5	3			

		Plan	~	Executi	on				Plan		Executi	on	
Period	Date	Topics to be covered	Source Material needed	Topics Covered	Date	Source Material Referred	Period	Date	Topics to be covered	Source Material needed	Topics Covered	Date	Source Material Referred
5	1014/24	perivation of kelvin model	4	perioration & belowin model	10/5	4	18	19/29	Infinduction to modern rice mig	4	Introduction to	9)7	9
6	PAN	Defivation of maxwell model	1	perivations of maximaly	16/2)	19	7/3/29	flow chart of modern rice my	2	Madernaice mill	97	2
7	4520	Typy of Newtonian & non newtonian	3	Types of Newtonia		3	20	1/2/	two chart for dry milling	3	Jew chart to	9 7	3
8	15/2	ply wologie,	,	Physiological of ceretical	21/5	1 .	21	117/29	Flow chart for Not milling	2	Flow churt for wet milled ny	11/7	2
9	26/3/	for 1st mobile	2	for 1st module	1 -1	2	22	1/2/24	condemnation & pasabasing steps	1	andersation & parability steps	11/2	1
10	3/4/2	Introduction about	1	Introduction to		4	23	2/2/24	Hydralic press	1	Hydraulic Press	12/7	١
11	9/6/24	Type of screens	,	Types delm	5/6	1	24	12/3/2	Screw press	3	Screw press	12/7	3
12		periorition of sure		perivation of EA-f screen	1610	. 3	25	142/2	pevining class	2	Revisión clay	15/7	2
13	3/01	Types of separati	2	Types of capacil	→ H6	2	26	·	Pevilarian Clary	4	Persision clay	15/7	4
14	_	magnitic & Electron separator preumti		magneti's A clan signato	14/6	3	27		scammary tench	3	summery of emchabout 5th mod.	16/7	3
15		cyclone separal	1	cyclone separator	15/6)	28	Ø13/2	1 Introduction to	2	Introduction to fly module	1	
16	8/8/2	problemy on Cycline seguetor	2	problem un Cyclene Separ	18/6	2	29	18/2/2	Procedure	2	size reduction	18/3	2
17	20/8/2	perinian clamar 3rd module	4	Revision cla on 3rd mad.	-	. 4	30	20/2/2	Jow cruster & syratory cruster	1	Saw cruster & gyratery crust	201	7

		Plan	-	Execut	ion	
Period	Date	Topics to be covered	Source Material needed	Topics Covered	Date	Source Material Referred
31	John Service S	Ball mill		Ball mill	20/3	1
32	2924	Hanner mill	2	tamwer mill	22)7	2
33			3	equality for	22/7	3
34	24 Heg	Rathing lew riches la Leandy le		Rating lu kicked low Rondy low.	23 P	4
35	3/7/24	problems an killy bendy	3	problemy on ricks & Bondy	23/7	3
36	247/21	overview of 4th module	2	overiew f	24/7	2
37	29/29/24	ferinion for 5th module	1	serinim for	24/7)
38	2 Japan	entroduction to	3	Introduction to	25/7	3
39	2 Harry	Entroduction to	3	Introduction to	25/7	3
40	20/2/2×	Introduction to	2	Into duction to	30/7	2
41	1/2/24	Derivation for	2	Desivation for	31/2	2
40	3/2/2	Derivation for Terminal velocity	1	Derivating for Terminal velociti	31/2)
43	362	problems	4	problem	3)8	4

		Plan		Execut	ion	
Period	Date	Topics to be covered	Source Material needed	Topics Covered	Date	Source Materia Referre
44	3624	sum tent capacity	2	Heat opacity	3/8	2
45	Helst	Summary & concluse	3	summary ton	5/8	3
46	5/8/24	Explating of		Explatin + In-1 paper		1
47	6/8/24	Explor A 2A-2 paper	2	Enph 1 JA-2 paper	6 8	2
48	6/6/24	Explored of Supolity	4	Enplu of TA-3 paper	6)8	4
49	7/8/24	pisem of gapatet		Distrum of Important guty	7/8.	J
					i de	
			7		0	

Others	Planned	Actual	Remarks	
Special Classes	2	2		
Tutorials				
Assignments	2	2		
Seminars				
IA Tests	3	2		
Portions Covered in the entire Semester	100	07:		
Course Effectiveness	92	7:		
Students Feedback	very	good		
Students Responce	Pos	itive	Response	
Result	No. of Stude	nts AP No	o. of Students Passed	% of Result
	23	-, -	23	100

Faculty in Charge

Signature of Principal (& Remarks if any)

HOD's Signature H.O.D.

ALVA'S INSTITUTE OF ENGINEERING $_{\mbox{\scriptsize AND}}$ TECHNOLOGY

MIJAR AOODBIDRI - 574 225

Class

ATTENDANCE CUM INTERNAL

Class							ENL	JA	NC	E	וט	VI 11	AIL	-KI	MAI	١																				
Subje	ed Ag	ricultural process	Eng	inu	nin	4										Subj	ect												nts]						
10 0	f Classes held			_	. 1	1	-	7.,	V . N	N	dad	ale	= 1/	d	711						T	1,0	Y		1.1.1	3161	a ill	AH	ence		-1	21				a 2
01		Date / Month	1 1							24	3 23	311	12	12	419	F	18/	Ich-	17 9	19	1117	(0)	19/	47 19	TIP	7 20	20	30		No. o	is /	% of Atten-	Internal	Assessm	ent (55)	Average Marks
SI No.	U.S.N.	Name	1	2	3	4		7	-	-	+-	+		-	14	16	17	18	19 2	0 21	22	23	_	_	_	-		30	60	Attend	ded	dance	1	II	BI	
1	4AL22AG001	AKSHATA GANGADHAR SUNKAD	P	P	A.	A	PP	2 1.	1	91.	p	P	P	P	P	P	P	P	PI	P	P	P	p .	P	PP	P	P	P		46	5	918	23	29	30	15
2	4A112A6002	DEEPAK J	9	P	P	ρ	PP	0			P	P	P	P	P	0	V	A	PF	P	P	P	Р	P	PF	P	P	P	4	41	1	897	18	22	29	13
3	HAL 2 RAHOOJ	DEEPIKA Y	P	P	P	P	PP)	p f) (9	1	7 4	P	P	P	P	P	PI	PP	P	٩	P	9	5 1	۶ ۶	P	P	1	48	\$ 6	979	17	24	16	טן
4	4AL22AG004	ESHA S	P	P	P	P	P	P			P	p	P	P	P	P	P	P	PF	P	P	P	P	P	P	PF	P	P	2	4	5	91.8	29	30	30	15
5	4AL22AG005	GURUPRASAD N	P	A			PI		UP	1	$\rho \mid \rho$	P	P	P	P	D	P	P	0 1	P	P	P	₽	P	7 7	P	P	P	1	16	6	gs.8	19	28	30	15
6	4AL22AL3006	KASTURI C		ρ			P	ρ	91	PA	0 1	P	P	P	A	P	P	P	PI	P	P	P	P	P.	P 1	PP	₽	P		as	2	97.9	23	29	30	15
7	4AL22AG001	M B KRUPA	ρ				P			- 1		p		P	P	P	P	P	P	9 6	?	P	P	P	P	F F	P	7	Ĕ.	40		918	26	28	28	14
8	4A122A6008	N HARIYANTH KUMAR	A	P	-		ρ			0 1	2 6			P	P	P	P	P	P	PF	0	B	9	PC	3	PF	P	P		0		100	24	30	೩೩	14
9	4A122AG009	NAVEEN NAYAK		ρ			ρ	-		P	OK	p	9 P	P	P	P	P	P	PI	P	P	P	P	P	P	7 P	P	₽		A:		95.9	29	೩٩	3D	15
10	4AL22A(4010	NIHAR & ACHARYA	P	p	P		ρ	_	_	_	DI			IP	P	P	P	P	P	PF	8	P	A	(A)	PP	P	F	P		100	ant .					
11	4AL22AG011	NIKITHA	ρ	p	P	P	P	ρ	PP	2	PI		P	E	P	IP	P	P	P	PF	P	P	P	P	PE	DS	P	P	6	A.	7	959	25	26	30	14
12	4AL 22 AGO12	NITHIN M SHETTY	10	10	P	0	PI	P	0	p	PI	2 6) F	P	Ð	18	P	P	P	PP	9	P	p	P	4 10	DE	P	P	1	4	/	75.9	29	27	30	15
13	4AL22A61013	PRAJNA SHREE JAIN	P	p	p	-	P			0 1	2 1	P	2 P	P			P	P	P	PF	P	P	p	P	PJ	PF	P			A	4	893	9	14	17	8
14	4AL 22AL:014	PRANJAL P POOJARY	P	ρ	ρ	p		P		PI		P		P	P	P	P	P	P	PF	1	P	2	P	3)(6	D P	P	P	4	A		100	28	30	30	15
	4AL22A6015	PRAPTHI N S		p			P	_			PI		OA	A	P	P	P	P	P	PF	P	p	p	P	8	PI		0		4	2	250	16	23	A	10
16	4ALRRAGE16	PUNEETH	p	1	_			p		D	DI	0 1		_	P	P	P		P	PF	, 6	8	¥	P	P	ρ	PP			4	6	93.8	29	30	30	15
17	4AL22A61011	RAJITH & SHETTY	P	P	P	P	-	р	*	-	ρί	2 1	-	-	_	P		P	P	PF	P	P	P	\rightarrow	_	P	-	2 8		A	6	100	17	21	25	t
18	4AL22AG019	SAMANSH Y SUVARNA	p	D	ρ	ρ	-	•	- 1	٠,	-	7 6	o t	P	P	12	P	P	P		P	P	A	(P)	- 1	AI	, ,	1		90	7	897	25	25	30	10
19	4A122A6020	SOMA M G	A	-	-		-	P	\rightarrow	<u>' '</u>	-	01	\neg) 8	P	3	P	P	P		0		-	0	. 4	P !	1	+-		4		89.7)		30	28	1-
20	HALZZAGOZI	THEJAS A V	0	-	0	0	D	0	0	D	0	0 1	01	·	P	-	P	P	P	PF	, t	P	P	P	P	PF	0	-		4	4	899	24	28	20	(
21	475376033	THRUPTHI S RAI	ρ	0	ρ	P	P	0	ρ	0	ρ	2 6	2 1	2 1	+	P				PF	_	1	P	P	P	P	-	P		4	,	100	29	30	29	1
22	4AL22 AG02	VEERESH S METI	A	-			p	_	_	<u> </u>	-	-		9 P		10		PP	P	ρ	P	PP	p	P	P	P		P		de		100	29	30	30	1
23		NASAU MANATA D	D				P						0 8		P	10				P		P	P	ρ	_	• •	PS	١,		42		85.7	17	14	A	8
24		THE TOP NINA TAK	E/	11-1	-	P	7	+	r		PI	1	1	1	+							Ť	Ė	-	-	+	+	+		40		89.7	19	27	14	12
25			+			Н	+	+	+	+	+	+	+	+	+	+1						+	-		+	+	+	+-	1	,	'	-,-				
26			+	-			+	+	+	+	+	+	+	+	+	+							+		+	-	+	+								
27			+			\vdash	+	+	+	+	+	+	+	+	+-	+_						+	-		-	+	+	+	-							
28			+	-			+	+	+	+	+	+	+	+	+	+							-			+	+	-	1					1		
29			+	-		\vdash	+	+	-	+	+	+	+	+	-	+				+	+	+	+-	-	-	+	+	+	- 3					1		
30			+	-		H	-	+	+	+	+	+	+	+	+	1				+	+	+	+		\vdash	+	+	+	-							
	aff Initials		01	(Per	06	0	(%)	Bur	26 6	3	(A)	(P)	0.6	0	Dr. Co	B	40	40	Pa	Page	346	10	4 (1)	R	MES.	A	A	200	1	0	ey	B	y (B)	1 Dy	Bu	6

ALVA'S INSTITUTE OF ENGINEERIN

AND TECHNOLOGY

MOODBIDRI - 574 225

Class

Agricultural Process Eng

No. of Classes held: Date / Month 30/12 SI 1 U.S.N. Name No AKSHATA 4AL22AG001 GANGADHAR SUNKAD 9 4AL12AG002 DEEPAK J 4AL22AG003 P DEEPIKA Y P 4AL22AG004 ESHA S 5 4AL22A6005 GIURUPRASAD N 4AL22AG006 KASTURI C 4AL22AG007 M B KRUPA 4A122A6008 N HARIYANTH KUMAR A p 4AL22AG009 NAVELN NAYAK 10 4ALZZAGO10 NIHAR & ACHARYA P 11 4AL22AGOII P NIKITHA 12 4AL 22 AGOIR NITHIN M SHETTY 13 4ALZZAGO13 PRAJNA SHREE JAIN 14 4AL 22AG014 PRANJAL P POOJARY 15 4AL 22 AGOIS PRAPTHI N S 16 4012246016 PUNEETH P 17 4AL22A61011 RAJITH S SHETTY 18 4ALZZAG019 p SAMANSH Y SUVARNA 19 4AL22AG020 SUMA M G A P 20 HAL22 AG021 THEJAS A V P 21 4AL22AG022 THRUPTHI S RAI 22 4AL22AG023 VEERESH S METI A VISHWANATH D 23 4AL22AG024 P CHAVADA NNAYAR 24 25 26 27 28 29 30 Og Staff Initials

Subje

220.	218	23	140	24h	nal	,	1							Sub	ect													
32					37	38	-	30	317	-	3/8	3/8	9	J	bjr	614	ar	T										Γ
P	P		_	_	100	-	-	-	41	42	43	44	4	∀	47	48	49	50	51	52	53	54	55	56	57	58	59	6
0		3	P		(P)	P		8	P	P	P	P	P				-	30	51	52	55	54	35	30		30	33	-
0	PI	D)	5	P	3	P	1	P	P	P	P	P	8-	P	P	P	P			_		_	_	_	-	\vdash		+
þ	P	P	0	N	P	P	P	1	P	P	1	P	9	P	P	P	P		Jan 8	-	-	-	-		-	-	-	+
P	7	P	P	6	P	-	1	-	-	P	17	p		P	P	9	P	-	-	-	-	-	-	-	-	-	-	+
-	P	P	-	-	-	P		_	-	A	P	P	1	-	P	P	P	-		-	-		-	-	-	-	-	+
P			P	P	-			_	-	r	P	9	0,	P	P	P	P		-		-	-	-	-	-	+	-	-
<u> </u>	P	P	-	-	+·	7			-	_	P	P		<u>r</u>	P	P	1	_	-	-	-	-	-		+	+-	+	-
P	P	-	P	_	-	-	-	-	3	P	P	1	P	P	P	P	1		-	+	-		-	+	+	-	+	+
	P	t		_	•		_	Pf	_	7	1	P	1	P	P	3	+-			-			+	-	-	+	-	+
PP	P	P		P	F	-) 1	1	f	P	f	1	4	10	9	-	-	-				+	-		-	+	+	_
99	P	P	F	-	_		2	PP			9		-	P	P	F	+		+	+	-	+	+	+	+	+	+	-
PP		_	-	_	1	P	PI	2	PP	8			-	P	P	-	-	0	+			+	-		+	+	+	-
P	1	1		2 1	P	Ý	2	1) [2 9	T	2 5	58	P	F	-	+		+	7 1			-			+	+	_
PP	7	2	PI	P	(F	P	9	P	77	9		9	+	P	F	-	- 4	-		+	+	-	+	+		+	+	_
PP	P	1					PF		P	PA		-	-	P	P	+	ť	P	+	+	+	+	+	+	+	+	+	_
PP	9	-	E	P	98	?) , [0)	PF	Τ.			P	1	-		-	+	1	-		-	+	+		+	_
PP	f			PF)	P	P	P	9	P		?	-	P	J) j	-			140	+	+	\dagger		+	+	+	_
PA)	9 (р	P	P	P	D	P	9	P		P	P	P	P	_		P	W L	1	1		1	+	+	十	+	_
PP	8		P		-	p	-	P	P	PI	-			P	F	-	-	ρ			-		+	\dagger	+	+	+	_
PP	_			-	_	-	-	P	0	PP	+	P	P	P	1	-	P	P				+	+	\dagger	+		+	_
PP	_	-		_	P	P	-	P	P	P		ρ	P	a P	1	2	p	9				+	+	1	1	-	+	-
-) /	P	-	A	P	P	A	P	10		7	P	_	gV	1)	P	D		2.0		51	+	1	1	+	+	_
PP)	0	ρ	0	1)	0	0	P	A	P	P		p	P	1	P	1	0	in l			2	1	1	7		+	-
r	+	4	r		r	-) V-	•			•	·				1					\top		+			1	+	-
-	+	+	+				_				_			-							+	+	+		1	+	+	-
-	+	+	-								_	-	+				\uparrow				\top	+	\dashv				+	
-	+	-	-			-	-	-	-	-		-	-				1				+	\dashv	\dashv		-	1	-	
	_		-			-		-	-	-	_	+-	+	-	+				1		+	-	1	-		+	-	
					_	-	-	-	-	-	_	+	+	-	+	+						-	-	,				-
						_	_	-	-	-	-	+	+	-	+	+				\dashv		-				\vdash	-	-
					1					w By				-	+	+	_		-	-	_	\rightarrow					ل_	1

AIE	T		ASSIGNMENTS			Format Issue N Rev. No	Ο.	ACD 10 01 00
Depar	tment	Agriculture	Engineering		Acader Semes	mic Year ster		2023-2041 V1h
SI.No.		Title	Books / Journals / Magazines referred	l	ate of uncement	Date of Submissi		Signature of the faculty
1.	Ą	Ssignment -1	physical & physiologic	15	6/24	18/6/29	-	By
			Proportice Fruits & regulables					
2.	AS	signment - 2	Design consideration	10	7/24	v/3/2	4	Pey.
			Air cleans grain					
						٠.		
						-		
								,
								2
						-		
						,		

AIET		INTER	RNAL E	EXAM R	RESULT	ANALY	'SIS		Forma Issue I Rev. N	No.	ACD 12 01 00
_{Department}	Ag	ricu	Hur	e t	Engì	neeria	ng	Semeste			vth
Total No. of Students	2	3						Subject Academ	0		9403 13-2024
Test	Date	Nu Attended	umber o	of Studer	nts 21-25	Signa Faculty	ature HOD		Rer	narks	
Т,	30/6/24	23	À	7	15	Conty					
T ₂	7/7/4	23	2	0	21	By	 le				
Т ₃	26/24	21	a	0	19	Rey	1				
T ₄											
T ₅											

Signature of Staff in - charge

HOD's Signature H.O.D.

(Unit of Alva's Education Foundation (R), Moodbidri) Affiliated to Visvesvaraya Technological University, Belagavi & Approved by AICTE, New Delhi. Recognized by Government of Karnataka.

A+, Accredited by NAAC & NBA (ECE & CSE)
Shobhavana Campus, MIJAR 574225, Moodbidri, D.K., Karnataka
Ph. 08258-262725; Mob:722262724,7026262725,mail:principalaiet08@gmail.com

Department of Agriculture Engineering Agricultural Process Engineering, Academic Year (2023-24) II YEAR IVth semester

	ADVANCED LEARNERS										
USN No	Name										
4AL22AG001	AKSHATA GANGADHAR SUNKAD										
4AL22AG002	DEEPAK J										
4AL22AG003	DEEPIKA Y										
4AL22AG004	ESHA S										
4AL22AG005	GURUPRASAD N										
4AL22AG006	KASTURI C										
4AL22AG007	M B KRUPA										
4AL22AG008	N HARIYANTH KUMAR										
4AL22AG009	NAVEEN NAYAK										
4AL22AG010	NIHAR S ACHARYA										
4AL22AG011	NIKITHA										
4AL22AG012	NITHIN M SHETTY										
4AL22AG013	PRAJNA SHREE JAIN										
4AL22AG014	PRANJAL P POOJARY										
4AL22AG015	PRAPTHI N S										
4AL22AG016	PUNEETH										
4AL22AG017	RAJITH S SHETTY										
4AL22AG019	SAMANSH Y SUVARNA										
4AL22AG020	SUMA M G										
4AL22AG021	THEJAS A V										
4AL22AG022	THRUPTHI S RAI										
4AL22AG023	VEERESH S METI										
4AL22AG024	VISHWANATH D CHAVADANNAVAR										
Faculty signatur	O(1)										

USN						
	-	-				

(Accredited by NAAC with A+ Grade)

Department of Agriculture Engineering

Continuous Internal Evaluation Test-1 AY 2023-24

Course Title: AGRICULTURAL PROCES	S ENGINEERING	Course Code: BAG403
Date: 03/06/2024	Time: 3:00 P.M – 04:30 P.M	Semester/Section: IV th
Faculty: Dr. K. RAJU YADAV		Max. Marks: 20

Note: Answer ONE FULL question from each Module.

Q.	No.	Questions	Marks	COs	BTL
	1	Module 1			J
1	a)	Explain about structure of wheat grain with a neat sketch	3 ,	CO1	L2
	b)	Draw the flow chart of Rheology	6	COI	LI
	c)	Derive the Kelvin model	6	COI	L4
		OR			
2	a)	Write about the physical properties of food grains	4	CO1	L2
	b)	Derive the Maxwell model	=	CO1	L4
	c)	Explain briefly about types of Newtonian and Non Newtonian fluids	4	CO1	LI
		Module 3			
3	a)	Explain about Types of screens	8	CO3	L2
	b)	Derive equation for the effectiveness of screen	7	CO3	Ľ4
		OR			
4	a)	Derive the equation of the cyclone separator and explain about working principle with a neat sketch	9	CO3	L4
	b)	Problem: A cyclone separator having the following specifications is used to collect particles of specific gravity 1.2. Cyclone diameter = 180 cm Air inlet diameter = 30 cm Separating height = 2.5 of dia. of inlet Helix pitch = 15* Inlet width = 10 cm Entry particle velocity = 15 m/s Compute the smallest particle which can be collected. Estimate the pressure drop through the unit.	7	CO3	L4

Levels of Bloom's Taxonomy

		L4	L5	L6
Level Remember Understar	nd Apply	Analyze	Evaluate	Create

CO1 Be proficient in the scope of the process engineering and the use of processing machinery								
CO2	Understand the physical properties, rheological properties and frictional properties of agricultural materials							

(Pey3)524 FACULTY

IQAE MEMBER

IQAC CHAIRMAN H.O.D.

(Accredited by NAAC with A+ Grade) Department of Agriculture Engineering

Department of Agriculture Engineering Continuous Internal Evaluation Test-1 AY 2023-24

Course Title: AGRICULTURAL PRO	Course Code: BAG403	
Date: 03/06/2024	Time: 3:00 P.M – 04:30 P.M	Semester/Section: IV
Faculty: Dr. K. RAJU YADAV		Max. Marks: 30

CIET-2 SCHEME AND SOLUTION

Q. No.	Questions	Marks	COs	BTL
	Module 1			
1 a)	Fig. 1.1: Structure of wheat grain 1. pericarp 2. aleurone layer 3. endosperm 4. seed coat 5. plumule 6. radicle	3	CO1	L2
b)	Rheology Deformation Flow			
	Elastic Inelastic Plastic Viscous Hookean Non-Hookean Viscoelastic Viscoplastic Non-Bingham Bingham Newtonian Non-Newtonian	4	CO1	L1

	c)	Example 3: Kelvin Model. You will derive in your homework that the <u>cquation for the Kelvin Model</u> is:			
		$\sigma + \frac{\eta}{E_S} \frac{d\sigma}{dt} = E_P \epsilon + \eta \left(\frac{E_P + E_S}{E_S} \right) \frac{d\epsilon}{dt}$	6	CO1	L4
		OR		J	
2	a)	Write about the physical properties of food grains	4	CO1	L2
	b)	Rearrange to get stress and strain on opposite sides to get the Maxwell model equation: $\sigma + \frac{\eta}{E} \frac{d\sigma}{dt} = \eta \frac{d\epsilon}{dt}$	5	CO1	1.4
	c)			COI	L4
		Newtonian & Non-Newtonian fluids It has been found that the Shear stress for flow of fluid is directly proportional to the velocity gradient (velocity/distance). $\tau \alpha \frac{du}{dy}$ Introduce the proportionality constant "viscosity". μ we get "Newton's law of viscosity" $\tau = \mu \frac{du}{dy}$ A fluid obeys this law is Newtonian fluid(i.e. constant viscosity) otherwise Non-Newtonian fluid			
		W. L. L. C	4	CO1	L1
3	a)	Module 3 Types of screens			
	,	In most screens the grain/seed drops through the screen opening by gravity. Coarse grains drop quickly and easily through large opening in a stationary surface. With finer particles, the screening surface must be agitated in some way. The common ways arc, (1) revolving a cylindrical screen about a horizontal axis and (2) shaking, gyrating or vibrating the flat screens.	_		
			5	CO3	L2

The total quantity of feed is the sum of overflow and underflow $F = 0 + U$ $Fm_f = 0 + U$ $Fm_f = 0 + Um_s$ Substituting $O = F - U$ and $U = F - O$ O O $\frac{m_f - m_s}{m_s - m_s}$ 2.3 and U $\frac{m_f - m_s}{m_s - m_s}$ 2.4 A common measure of screen effectiveness is the ratio of actual amount of oversize material in the overflow to the amount of oversize material entering with the feed. Thus, $E = \frac{Om_s}{Fm_s}$ and $E_s = \frac{U(1 - m_s)}{F(1 - m_f)}$ 2.5 And $E_s = \frac{U(1 - m_s)}{F(1 - m_f)}$ Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_f - m_s)^2(m_s - m_f)m_g(1 - m_g)}{(m_s - m_g)^2(1 - m_f)m_f}$ 2.7 OR OR	Fig. 2.4. If the solution of the state and the state of the solution of the s					
Substituting $O = F - U$ and $U = F - O$ $O = \frac{m_1 - m_2}{m_0 - m_1}$ $A Common measure of screen effectiveness is the ratio of actual amount of oversize material in the overflow to the amount of oversize material entering with the feed. Thus, E = \frac{Om}{Fm} Coverall effectiveness E = E_s \times E_s Overall effectiveness E = E_s \times E_s E = \frac{(m_1 - m_s)(m_s - m_s)m_s(1 - m_s)}{(m_s - m_s)^2 (1 - m_s)m_f} E = \frac{(m_1 - m_s)(m_s - m_s)m_s(1 - m_s)}{(m_s - m_s)^2 (1 - m_s)m_f} OR a) OR OR$	Substituting $O = F - U$ and $U = F - O$ $O = \frac{m_1 - m_2}{m_0 - m_1}$ $A = \frac{m_2 - m_1}{m_1 - m_2}$ $A = \frac{m_2 - m_1}{m_2 - m_2}$ $A = \frac{m_2 - m_1}{m_2 - m_2}$ $A = \frac{m_2 - m_2}{m_2 - $	b)	The total quantity of feed is the sum of overflow and underflow			
Substituting $O = F - U$ and $U = F - O$ $O = \frac{m_1 - m_2}{m_2 - m_3}$ and $\frac{U}{F} = \frac{m_2 - m_1}{m_2 - m_4}$ $A common measure of screen effectiveness is the ratio of actual amount of oversize material in the overflow to the amount of oversize material entering with the feed. Thus, E = \frac{Cm_2}{Fm_1} A = \frac{U(1 - m_2)}{F(1 - m_1)} Coverall effectiveness E = E_0 \times E_0 = \frac{OUn_2}{Fn_1} \frac{(1 - m_2)}{(1 - m_1)} Substituting the values of \frac{O}{F} and \frac{U}{F} E = \frac{(m_1 - m_1)(m_2 - m_1)m_2}{(m_2 - m_2)^2 (1 - m_1)m_1} \frac{OR}{(m_2 - m_2)^2 (1 - m_1)m_1} \frac{OR}{(m_2 - m_2)^2 (1 - m_1)m_2} \frac{OR}{(m_2 - m_2)^2 (1 - m_1)m_2} \frac{OR}{(m_2 - m_2)^2 (1 - m_1)m_2} \frac{OR}{(m_2 - m_2)^2 (1 - m_2)m_1} \frac{OR}{(m_2 - m_2)^2 (1 - m_2)m_1} \frac{OR}{(m_2 - m_2)^2 (1 - m_2)m_2} \frac{OR}{(m_2 - m_2)^2 (1 - m_2)m_2$	Substituting $O = F - U$ and $U = F - O$ $O = \frac{m_f - m_u}{F} = \frac{m_v - m_f}{m_v - m_f}$ $A = \frac{U}{F} = \frac{m_v - m_f}{m_v - m_f}$ $A = \frac{U - M_v}{F} = \frac{m_v - m_f}{m_v - m_f}$ $A = \frac{U - M_v}{F} = \frac{m_v - m_v}{m_v - m_f}$ $A = \frac{U - M_v}{F} = \frac{M_v}{F} = \frac{M_v}{F}$ $A = \frac{U - M_v}{F} = \frac{M_v}{F} = \frac{M_v}{$		F O 11			
and $U = F - O$ $O = \frac{m_1 - m_u}{m_u - m_u}$ $E = \frac{m_v - m_v}{m_v - m_u}$ $A common measure of screen effectiveness is the ratio of actual amount of oversize material in the overflow to the amount of oversize material entering with the feed. Thus, E = \frac{Cm_v}{Fm_v} A Common measure of screen effectiveness is the ratio of actual amount of oversize material entering with the feed. Thus, E = \frac{Cm_v}{Fm_v} Common measure of E = E_v \times E_v E = \frac{OUn_v}{F^2 m_l} (1 - m_u) E = \frac{OUn_v}{F^2 m_l} (1 - m_l) E = \frac{(m_l - m_u)^2 (m_u - m_l) m_v (1 - m_u)}{(m_u - m_u)^2 (1 - m_l) m_l} COR 3) OR OR OR$	and $U = F - O$ $O = \frac{m_f - m_u}{m_w - m_u}$ $A common measure of screen effectiveness is the ratio of actual amount of oversize material in the overflow to the amount of oversize material entering with the feed. Thus, E = \frac{Om_v}{F(1 - m_u)} A Common measure of screen effectiveness is the ratio of actual amount of oversize material in the overflow to the amount of oversize material entering with the feed. Thus, E = \frac{Om_v}{Fm_v} Com_v = \frac{OUm_v}{F(1 - m_u)} Coverall effectiveness E = E_u \times E_u = \frac{OUm_v}{F^2 m_f} \frac{(1 - m_u)}{F^2 m_f} \frac{U}{F^2} E = \frac{(m_f - m_u)^2 (m_v - m_f) n_v}{(m_w - m_g)^2 (1 - m_f) m_f} Coverall effectiveness E = \frac{E_u \times E_u}{E_u} E = \frac{(m_f - m_u)^2 (m_v - m_f) n_v}{(m_w - m_g)^2 (1 - m_f) m_f} Coverall effectiveness E = \frac{E_u \times E_u}{E_u} E = \frac{(m_f - m_u)^2 (m_u - m_f) n_v}{(m_w - m_g)^2 (1 - m_f) m_f} Coverall effectiveness is expension for over the given by the following expension for expension for$					
$\frac{O}{F} = \frac{m_1 - m_u}{m_u - m_v} \qquad23$ and $\frac{U}{F} = \frac{m_u - m_v}{m_u - m_v} \qquad24$ A common measure of screen effectiveness is the ratio of actual amount of oversize material in the overflow to the amount of oversize material entering with the feed. Thus, $E = \frac{Cm_v}{Fm_v} \qquad25$ and $E_u = \frac{U(1 - m_u)}{F(1 - m_t)} \qquad25$ and $E_u = \frac{OUm_v}{F(1 - m_t)} (1 - m_u) \qquad26$ Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_f - m_u)(m_v - m_t)m_t(1 - m_u)}{(m_v - m_u)^2 (1 - m_t)m_f} \qquad2.8$ OR 3) OR OR	$\frac{O}{F} = \frac{m_l - m_u}{m_u - m_v} \qquad2.3$ and $\frac{U}{F} = \frac{m_u - m_l}{m_u - m_v} \qquad2.4$ A common measure of screen effectiveness is the ratio of actual amount of oversize material in the overflow to the amount of oversize material entering with the feed. Thus, $E = \frac{Cm_v}{Fm_v}$ $\frac{U(1 - m_u)}{F(1 - m_l)} \qquad2.5$ and $E_u = \frac{U(1 - m_u)}{Fm_l(1 - m_l)} \qquad2.7$ Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_l - m_u)(m_u - m_l)m_u(1 - m_u)}{(m_u - m_u)^2(1 - m_l)m_l} \qquad2.8$ OR 3) OR OR					
and $\frac{U}{F} = \frac{m_y - m_f}{m_w - m_s}$ 2.4 A common measure of screen effectiveness is the ratio of actual amount of oversize material in the overflow to the amount of oversize material entering with the feed. Thus, $E = \frac{Om_w}{Fm}$ 2.5 and $E_w = \frac{U(1 - m_w)}{F(1 - m_f)}$ 2.6 Overall effectiveness $E = E_y \times E_w$ 2.6 $= \frac{Oll m_y}{F} (1 - m_f)$ 2.7 Substituting the values of $O = \frac{F}{F}$ and $U = \frac{F}{F}$ 2.8 $E = \frac{(m_f - m_w)(m_w - m_f)m_w(1 - m_w)}{(m_w - m_w)^2 (1 - m_f)m_f}$ 2.8 OR a) OR OR	and $\frac{U}{F} = \frac{m_e - m_f}{m_e - m_e}$ 2.4 A common measure of screen effectiveness is the ratio of actual amount of oversize material in the overflow to the amount of oversize material entering with the feed. Thus, $E_a = \frac{Om_a}{Fm_e}$ 2.5 and $E_u = \frac{U(1 - m_u)}{F(1 - m_f)}$ 2.6 Overall effectiveness $E = E_v \times E_u$ 2.6 Overall effectiveness $E = E_v \times E_u$ 2.7 Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ 2.7 $E = \frac{(m_f - m_u)(m_e - m_f)n_e(1 - m_u)}{(m_u - m_u)^2(1 - m_f)m_f}$ 2.8 OR OR		and $U=F-O$			
and $\frac{U}{F} = \frac{m_y - m_f}{m_w - m_s}$ 2.4 A common measure of screen effectiveness is the ratio of actual amount of oversize material in the overflow to the amount of oversize material entering with the feed. Thus, $E = \frac{Om_w}{Fm}$ 2.5 and $E_w = \frac{U(1 - m_w)}{F(1 - m_f)}$ 2.6 Overall effectiveness $E = E_y \times E_w$ 2.6 $= \frac{Oll m_y}{F} (1 - m_f)$ 2.7 Substituting the values of $O = \frac{F}{F}$ and $U = \frac{F}{F}$ 2.8 $E = \frac{(m_f - m_w)(m_w - m_f)m_w(1 - m_w)}{(m_w - m_w)^2 (1 - m_f)m_f}$ 2.8 OR a) OR OR	and $\frac{U}{F} = \frac{m_e - m_f}{m_e - m_e}$ 2.4 A common measure of screen effectiveness is the ratio of actual amount of oversize material in the overflow to the amount of oversize material entering with the feed. Thus, $E_a = \frac{Om_a}{Fm_e}$ 2.5 and $E_u = \frac{U(1 - m_u)}{F(1 - m_f)}$ 2.6 Overall effectiveness $E = E_v \times E_u$ 2.6 Overall effectiveness $E = E_v \times E_u$ 2.7 Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ 2.7 $E = \frac{(m_f - m_u)(m_e - m_f)n_e(1 - m_u)}{(m_u - m_u)^2(1 - m_f)m_f}$ 2.8 OR OR		$O_m_f - m_u$			
and $\frac{U}{F} = \frac{m_{e} - m_{f}}{m_{o} - m_{e}}$ 2.4 A common measure of screen effectiveness is the ratio of actual amount of oversize material in the overflow to the amount of oversize material entering with the feed. Thus, $E = \frac{Om}{Fm_{f}}$ 2.5 and $E_{g} = \frac{U(1 - m_{g})}{F(1 - m_{f})}$ 2.6 Overall effectiveness $E = E_{g} \times E_{g}$ 2.6 $= \frac{OUm_{g}}{Fm_{f}} (1 - m_{g})$ 2.7 Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_{f} - m_{g})^{2}(n_{g} - m_{f})m_{g}}{(m_{g} - m_{g})^{2}(1 - m_{f})m_{f}}$ 2.8 OR OR	and $\frac{U}{F} = \frac{m_e - m_l}{m_o - m_u}$ 2.4 A common measure of screen effectiveness is the ratio of actual amount of oversize material in the overflow to the amount of oversize material entering with the feed. Thus, $E = \frac{Om}{Fmu}$ 2.5 and $E_u = \frac{U(1 - m_u)}{F(1 - m_l)}$ 2.6 Overall effectiveness $E = E_o \times E_u$ 2.6 $= \frac{OIM_o}{Fm} (1 - m_u)$ Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_l - m_u)(m_e - m_l)m_l}{(m_u - m_u)^2} \frac{(1 - m_l)m_l}{(1 - m_u)}$ 2.7 OR OR OR		$\overline{F} = \frac{1}{m_0 - m_{ii}}$			
A common measure of screen effectiveness is the ratio of actual amount of oversize material in the overflow to the amount of oversize material entering with the feed. Thus, $E = \frac{Om}{F\pi m}$ and $E_u = \frac{U(1 - m_u)}{F(1 - m_l)}$ Overall effectiveness $E = E_u \times E_u$ $= \frac{OUm_u}{Fm_l} (1 - m_l)$ Substituting the values of O $= \frac{F}{F} \frac{1}{m_l} (1 - m_u)$ $E = \frac{(m_l - m_u)}{(m_u - m_u)^2} \frac{1}{(1 - m_l)^2 m_l}$ 2.7 OR a) OR OR	A common measure of screen effectiveness is the ratio of actual amount of oversize material in the overflow to the amount of oversize material entering with the feed. Thus, $E = \frac{Om}{Frit}$ $E_{u} = \frac{U(1 - m_{u})}{F(1 - m_{f})}$ Overall effectiveness $E = E_{u} \times E_{u}$ $= \frac{OUm_{u}}{Fm_{f}(1 - m_{f})}$ Overall effectiveness $E = E_{u} \times E_{u}$ $= \frac{OUm_{u}}{Fm_{f}(1 - m_{f})}$ Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_{f} - m_{u})(m_{u} - m_{f})m_{u}(1 - m_{u})}{(m_{u} - m_{u})m_{f}(1 - m_{u})}$ OR OR a) OR OR 1 A common measure of screen effectiveness is the ratio of actual amount of oversize material entering with the feed. 1.2.6 OVerall effectiveness $E = E_{u} \times E_{u}$ $E = \frac{(m_{f} - m_{u})(m_{u} - m_{f})m_{u}(1 - m_{u})}{(m_{u} - m_{f})m_{f}(1 - m_{u})}$ OR 1 A) OR 1 A) OR 1 A) A) A) A) A) A) A) A) A)		11 # - #.			
A common measure of screen effectiveness is the ratio of actual amount of oversize material in the overflow to the amount of oversize material entering with the feed. Thus, $E = \frac{Om}{F\pi m}$ and $E_u = \frac{U(1 - m_u)}{F(1 - m_l)}$ Overall effectiveness $E = E_u \times E_u$ $= \frac{OUm_u}{Fm_l} (1 - m_l)$ Substituting the values of O $= \frac{F}{F} \frac{1}{m_l} (1 - m_u)$ $E = \frac{(m_l - m_u)}{(m_u - m_u)^2} \frac{1}{(1 - m_l)^2 m_l}$ 2.7 OR a) OR OR	A common measure of screen effectiveness is the ratio of actual amount of oversize material in the overflow to the amount of oversize material entering with the feed. Thus, $E = \frac{Om}{Frit}$ $E_{u} = \frac{U(1 - m_{u})}{F(1 - m_{f})}$ Overall effectiveness $E = E_{u} \times E_{u}$ $= \frac{OUm_{u}}{Fm_{f}(1 - m_{f})}$ Overall effectiveness $E = E_{u} \times E_{u}$ $= \frac{OUm_{u}}{Fm_{f}(1 - m_{f})}$ Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_{f} - m_{u})(m_{u} - m_{f})m_{u}(1 - m_{u})}{(m_{u} - m_{u})m_{f}(1 - m_{u})}$ OR OR a) OR OR 1 A common measure of screen effectiveness is the ratio of actual amount of oversize material entering with the feed. 1.2.6 OVerall effectiveness $E = E_{u} \times E_{u}$ $E = \frac{(m_{f} - m_{u})(m_{u} - m_{f})m_{u}(1 - m_{u})}{(m_{u} - m_{f})m_{f}(1 - m_{u})}$ OR 1 A) OR 1 A) OR 1 A) A) A) A) A) A) A) A) A)		and $\frac{u}{r} = \frac{m_0 - m_f}{r}$			
oversize material in the overflow to the amount of oversize material entering with the feed. Thus, $E_{-} = \frac{U(1 - m_{\phi})}{F(1 - m_{f})}$ 2.5 and $E_{+} = \frac{U(1 - m_{\phi})}{F(1 - m_{f})}$ 2.6 Overall effectiveness $E = E_{\phi} \times E_{\phi}$ 2.6 $= \frac{OUm_{\phi} (1 - m_{\phi})}{F^{2} m_{f} (1 - m_{f})}$ 2.7 Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_{f} - m_{\phi})(m_{\phi} - m_{f})m_{\phi}(1 - m_{\phi})}{(m_{\phi} - m_{\phi})^{2} (1 - m_{f})m_{f}}$ 2.8 7 CO3 LA OR a) OR The separating force can be grown as follows: $F_{\phi} = \frac{(m_{f} - m_{\phi})(m_{\phi} - m_{\phi})m_{\phi}(1 - m_{\phi})}{(m_{\phi} - m_{\phi})^{2} (1 - m_{f})m_{f}}$ 2.11 Reputation force can be grown as follows: $F_{\phi} = \frac{(m_{f} - m_{\phi})(m_{\phi} - m_{\phi})m_{\phi}(1 - m_{\phi})}{(m_{\phi} - m_{\phi})^{2} (1 - m_{f})m_{f}}$ The separating force can be grown follows: $F_{\phi} = \frac{(m_{f} - m_{\phi})(m_{\phi} - m_{\phi})m_{\phi}(1 - m_{\phi})}{(m_{\phi} - m_{\phi})^{2} (1 - m_{f})m_{\phi}}$ The performance for expansion factor of cyclone can be given by the following equation. Proformance force, $S_{\phi} = \frac{M_{\phi}}{V_{\phi}} = M_{\phi}$ is an average diameter of a factor of the controlling force rating redshift in the cyclone sand the repeatation factor of the controlling force rating redshift in the cyclone sand the repeatation factor of the cyclone sand the cyclone sand the cyclone sand the repeatation factor of the cyclone sand the repeatation factor of the cyc	oversize material in the overflow to the amount of oversize material entering with the feed. Thus, $E = \frac{Om_v}{Fmv}$ 2.5 and $E_u = \frac{U(1-m_u)}{F(1-m_l)}$ 2.6 Overall effectiveness $E = E_v \times E_u$ $= \frac{OUm_v}{F^2m_l} (1-m_l)$ 2.7 Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_l - m_u)(m_v - m_l)m_v}{(m_v - m_u)^2 (1-m_l)m_l}$ 2.8 7 CO3 L OR a) OR The star constant values, $\omega = \frac{C_v}{M_v} = C$		2.9			
Thus, $E = \frac{Cm_c}{Fm}$ and $E_{\parallel} = \frac{U(1-m_b)}{F(1-m_f)}$ Overall effectiveness $E = E_b \times E_a$ $= \frac{OUm_b (1-m_b)}{F^2 m_f (1-m_f)}$ Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_f - m_b)(m_b - m_f)m_b (1-m_b)}{(m_b - m_b)^2 (1-m_f)m_f}$ 2.8 7 CO3 L4 OR a) OR 1.1 The spearing force are independent viscoley, m_f : $f = \frac{1}{M^2} \sum_{j=1}^{N} \frac{1}{j} $	Thus, $E_{-} = \frac{Cm_{-}}{Fm_{-}}$ 2.5 and $E_{-} = \frac{U(1-m_{0})}{F(1-m_{f})}$ 2.6 Overall effectiveness $E = E_{0} \times E_{0}$ 2.6 $= \frac{OUn_{0}}{F^{2}m_{f}(1-m_{f})}$ 2.7 Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_{f} - m_{o})(m_{o} - m_{o})m_{o}(1-m_{o})}{(m_{o} - m_{o})^{2}(1-m_{f})m_{f}}$ 2.8 OR 3) OR 3 In this increase is separative factor, $a = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{i}$ 2.1 The separating force can be given as follows: $F = \frac{1}{N} \times \frac{V}{V} \sum_{i=1}^{N} \frac{1}{i}$ The sportenesser or separation factor of cyclone can be given by the following equalsus. Professionary or separation factor of cyclone can be given by the following equalsus. Professionary or separation factor of cyclone can be given by the following equalsus. Professionary or separation factor of cyclone can be given by the following equalsus. Professionary or separation factor of cyclone can be given by the following equalsus of the cyclone of the c		oversize material in the overflow to the amount of oversize material entering with			
and $E_u = \frac{U(1 - m_u)}{F(1 - m_t)}$ Overall effectiveness $E = E_0 \times E_n$ $= \frac{OUm_0 (1 - m_u)}{F^2 m_f (1 - m_t)}$ Substituting the values of $\frac{C}{F}$ and $\frac{U}{F}$ $E = \frac{(m_f - m_u)(m_o - m_u)^2 (1 - m_t)m_t}{(m_o - m_u)^2 (1 - m_t)m_f}$ 2.8 7 CO3 LA OR a) OR The shall-Cytone separator $V = locas or together sheepers or together shall be compared to the compared $	and $E_u = \frac{U(1-m_u)}{F(1-m_l)}$ Overall effectiveness $E = E_v \times E_v$ $= \frac{OUm_o (1-m_o)}{P^2 m_l (1-m_l)}$ Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_l - m_u)(m_o - m_l)^2 \cdot (1-m_l)m_l}{(m_o - m_u)^2 \cdot (1-m_l)m_l}$ 2.8 7 CO3 L OR a) OR The linear of tangential velocity, m_l The separating force can be given as follows: $F = \frac{(m_l - m_u)(m_o - m_u)^2 \cdot (1-m_l)m_l}{(m_o - m_u)^2 \cdot (1-m_l)m_l}$ 2.8 7 CO3 L The performance area, $s_1 = \frac{(m_l - m_u)(m_o - m_u)^2}{(m_o - m_u)^2 \cdot (1-m_l)m_l}$ The performance area is specially selected as the period of the coloring expension. Purformance facto, $s_1 = \frac{(m_l - m_u)(m_o - m_u)^2}{(m_o - m_u)^2 \cdot (1-m_u)^2}$ The become duta at $s_1 = \frac{(m_l - m_u)(m_o - m_u)}{(m_o - m_u)^2 \cdot (1-m_u)}$ The become area is specially of a density 100 $\frac{(m_l - m_u)(m_o - m_u)}{(m_o - m_u)^2 \cdot (1-m_u)}$ The become of the special of the special conserved of the special cons					
and $E_u = \frac{U(1 - m_u)}{F(1 - m_t)}$ Overall effectiveness $E = E_0 \times E_n$ $= \frac{OUm_0 (1 - m_u)}{F^2 m_f (1 - m_t)}$ Substituting the values of $\frac{C}{F}$ and $\frac{U}{F}$ $E = \frac{(m_f - m_u)(m_o - m_u)^2 (1 - m_t)m_t}{(m_o - m_u)^2 (1 - m_t)m_f}$ 2.8 7 CO3 LA OR a) OR The shall-Cytone separator $V = locas or together sheepers or together shall be compared to the compared $	and $E_u = \frac{U(1-m_u)}{F(1-m_l)}$ Overall effectiveness $E = E_v \times E_v$ $= \frac{OUm_o (1-m_o)}{P^2 m_l (1-m_l)}$ Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_l - m_u)(m_o - m_l)^2 \cdot (1-m_l)m_l}{(m_o - m_u)^2 \cdot (1-m_l)m_l}$ 2.8 7 CO3 L OR a) OR The linear of tangential velocity, m_l The separating force can be given as follows: $F = \frac{(m_l - m_u)(m_o - m_u)^2 \cdot (1-m_l)m_l}{(m_o - m_u)^2 \cdot (1-m_l)m_l}$ 2.8 7 CO3 L The performance area, $s_1 = \frac{(m_l - m_u)(m_o - m_u)^2}{(m_o - m_u)^2 \cdot (1-m_l)m_l}$ The performance area is specially selected as the period of the coloring expension. Purformance facto, $s_1 = \frac{(m_l - m_u)(m_o - m_u)^2}{(m_o - m_u)^2 \cdot (1-m_u)^2}$ The become duta at $s_1 = \frac{(m_l - m_u)(m_o - m_u)}{(m_o - m_u)^2 \cdot (1-m_u)}$ The become area is specially of a density 100 $\frac{(m_l - m_u)(m_o - m_u)}{(m_o - m_u)^2 \cdot (1-m_u)}$ The become of the special of the special conserved of the special cons		Thus, E =			
and $E_u = \frac{U(1-m_u)}{F(1-m_t)}$ 2.6 Overall effectiveness $E = E_0 \times E_n$ $= \frac{OUm_0}{F^2 m_f (1-m_t)}$ Substituting the values of $\frac{C}{F}$ and $\frac{U}{F}$ $E = \frac{(m_f - m_u)(m_0 - m_t)m_0(1-m_u)}{(m_u - m_u)^2(1-m_t)m_f}$ 2.8 OR a) OR OR A Ple 1-linear or transprative feeting of the side	and $E_u = \frac{U(1-m_u)}{F(1-m_p)}$ Overall effectiveness $E = E_v \times E_v$ $= \frac{OUm_o}{F^2 m_f} (1-m_p)$ Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_f - m_u)(m_o - m_p)m_o(1-m_u)}{(m_o - m_p)^2 (1-m_f)m_f}$ 2.8 7 CO3 L OR 3) OR 3) Fig. 1.3. (Cyclore separate Vicinity, m_f) The substitutive sport of the properties of the pro					
Overall effectiveness $\tilde{E} = E_0 \times E_u$ $= \frac{OUm_0 \ (1 - m_u)}{FT \ m_f \ (1 - m_f)}$ Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_f - m_u) (m_0 - m_f) m_0 (1 - m_u)}{(m_0 - m_u)^2 \ (1 - m_f) m_f}$ 2.8 OR OR 1) **P 1.3.1 Cyclow expanses **P 1.3.2 Cyclow expanses **P 1.3.3 Cyclow expanses **P 2.3.3 Cyclow expanses **P 2.3.3 Cyclow expanses **P 2.3.3 Cyclow expanses **P 2.3.3 Cyclow expanses **P 2.3.4 Cyclow expanses **P 3.3 Cyclow expanses **P 3.3 Cyclow expanses **P 3.4 Cyclow expanses **P 3.4 Cyclow expanses **P 4.3 Cyclow expanses **P 5.3 Cyclow expanses **P 6.3 Cyclow ex	Overall effectiveness $E = E_o \times E_u$ $= \frac{OUm_0 \cdot (1 - m_u)}{F^2 \cdot m_f \cdot (1 - m_f)}$ Substituting the values of $\frac{O}{F}$ and $\frac{J}{F}$ $E = \frac{(m_f - m_u) \cdot (m_o - m_f) \cdot m_o \cdot (1 - m_u)}{(m_o - m_u)^2 \cdot (1 - m_f) \cdot m_f}$ 2.8 OR a) OR $V = \lim_{h \to \infty} \text{or angential velocity, } \text{ as } f$ The separation factor of the given by the following reparation becomes more effective. For $M = \frac{J^2}{F^2} \cdot \frac{J}{F^2}$ The bose found about as S^2 increases the separation becomes more effective. Problems, fact carrying paradical of admity 120 Bytes and an average diameter of the cycloser coins of the cycloser of the separation becomes more effective. Problems, fact carrying paradical of admity 120 Bytes and an average diameter of the cycloser of the cycloser of the cycloser of the separation factor of the cycloser.		and $E = \frac{U(1-ni_u)}{}$			
Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_f - m_u)(m_o - m_f)n_o(1 - m_u)}{(m_o - m_u)^2 (1 - m_f)n_f}$ 2.8 OR $V = \lim_{h \to \infty} \frac{1}{(m_o - m_u)^2} \frac{1}{(1 - m_f)n_f}$ $V = \lim_{h \to \infty} \frac{1}{(1 - m_f)^2} \frac$	Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_f - m_u)(m_o - m_f)m_o(1 - m_u)}{(m_o - m_u)^2(1 - m_f)m_f}$ 2.8 OR $V = \lim_{h \to \infty} \frac{1}{(m_f - m_u)} \frac{1}{(m_o - m_f)^2(1 - m_f)m_f}$ 2.8 OR		$F(1-m_i)$			
Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_f - m_u)(m_o - m_f)m_o(1 - m_u)}{(m_o - m_u)^2(1 - m_f)m_f}$ 2.8 OR OR $V = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{1000} = $	Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_f - m_u)(m_o - m_f)m_o(1 - m_u)}{(m_o - m_u)^2 (1 - m_f)m_f}$ OR a) $V = \frac{1}{F} = \frac{1}{F}$		Overall effectiveness $E = E_x \times E_y$ 2.6			
Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_f - m_u) (m_o - m_t) m_o (1 - m_u)}{(m_o - m_u)^2 (1 - m_t) m_f}$ 2.8 7 CO3 L4 OR a) Fig. 1.3s : Cyclore separator $V = lines or a seguration fection of prime in the large of the $	Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_f - m_w)(m_o - m_f)m_o(1 - m_w)}{(m_o - m_w)^2(1 - m_f)m_f}$ 2.8 7 CO3 L OR a) $V = \text{linear or tangential velocity, } w/r$ The separating force can be given a follows: $F = W \sqrt{\frac{V^2}{F^2} + 1}$ The performance or separation factor of cyclone can be given by the following expansion. Performance for separation factor of cyclone can be given by the following expansion. Performance for separation factor of cyclone can be given by the following expansion. Performance for separation factor of cyclone can be given by the following expansion. Performance for separation factor of cyclone can be given by the following expansion. Performance for separation factor of cyclone can be given by the following expansion for following expansion for the following expansion expansion for the following expansion expansion for the following expansion for the following expansion expansion for the following expansion ex					
Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_f - m_u) (m_o - m_t) m_o (1 - m_u)}{(m_o - m_u)^2 (1 - m_t) m_f}$ 2.8 7 CO3 L4 OR a) Fig. 1.3s : Cyclore separator $V = lines or a seguration fection of prime in the large of the $	Substituting the values of $\frac{O}{F}$ and $\frac{U}{F}$ $E = \frac{(m_f - m_w)(m_o - m_f)m_o(1 - m_w)}{(m_o - m_w)^2(1 - m_f)m_f}$ 2.8 7 CO3 L OR a) $V = \text{linear or tangential velocity, } w/r$ The separating force can be given a follows: $F = W \sqrt{\frac{V^2}{F^2} + 1}$ The performance or separation factor of cyclone can be given by the following expansion. Performance for separation factor of cyclone can be given by the following expansion. Performance for separation factor of cyclone can be given by the following expansion. Performance for separation factor of cyclone can be given by the following expansion. Performance for separation factor of cyclone can be given by the following expansion. Performance for separation factor of cyclone can be given by the following expansion for following expansion for the following expansion expansion for the following expansion expansion for the following expansion for the following expansion expansion for the following expansion ex		$=\frac{Oum_o (1-m_u)}{m_u}$			
Substituting the values of $\frac{C}{F}$ and $\frac{C}{F}$ $E = \frac{(m_f - m_u)^2 (m_o - m_f) m_o (1 - m_u)}{(m_o - m_u)^2 (1 - m_f) m_f}$ 2.8 7 CO3 Lo OR 3) $V = \lim_{x \to \infty} \text{or a segmental vector, } m_f = \frac{c_f}{m_o} \text{ or a segmental vector, } m_f = $	Substituting the values of $\frac{C}{F}$ and $\frac{C}{F}$ $E = \frac{(m_f - m_u)(m_o - m_f)m_o(1 - m_u)}{(m_o - m_u)^2(1 - m_f)m_f}$ 2.8 7 CO3 L OR 3) Fig. 1.3: (Cycline separator $V = \text{linear or tangential velocity}, m/s$ The separating force and by grean as follows: $F = W \frac{\sqrt{C}}{\sqrt{C}} + \frac{1}{\sqrt{C}}$ The properation factor of cycline can be given by the following equation. Performance factor, $S = \frac{C}{W} = \frac{C}{F}$ R has been found that is $S = \frac{C}{W} = \frac{C}{F}$ R has been found that is $S = \frac{C}{W} = \frac{C}{F}$ R has been found that is $S = \frac{C}{W} = \frac{C}{F}$ R has been found that is $S = \frac{C}{W} = \frac{C}{F}$ R has been found that is $S = \frac{C}{W} = \frac{C}{F}$ R has been found that is $S = \frac{C}{W} = \frac{C}{F}$ R has been found that is $S = \frac{C}{W} = \frac{C}{F}$ R has been found that is $S = \frac{C}{W} = \frac{C}{F}$ R has been found that is $S = \frac{C}{W} = \frac{C}{F}$ R has been found that is $S = \frac{C}{W} = \frac{C}{F}$ R has been found that is $S = \frac{C}{W} = \frac{C}{F}$ R has been found that is $S = \frac{C}{W} = \frac{C}{F}$ R has been found that is $S = \frac{C}{W} = \frac{C}{F}$ R has been found that is $S = \frac{C}{W} = \frac{C}{W} = \frac{C}{W}$ R has been found that is $S = \frac{C}{W} = \frac{C}{W}$		$F^2 m_l (1 - m_l)$			
$E = \frac{(m_f - m_u) (m_o - m_f) m_o (1 - m_u)}{(m_o - m_u)^2 (1 - m_f) m_f} \qquad 2.8 \qquad 7 \qquad CO3 \qquad Lo$ OR $I_{ij} = \frac{1}{2} \sum_{j=1}^{N_f} \frac{1}{j} \sum_{j=1}$	$E = \frac{(m_f - m_u) (m_o - m_l) m_o (1 - m_u)}{(m_o - m_u)^2 (1 - m_l) m_f} \qquad 2.8 \qquad 7 \qquad CO3 \qquad L$ OR $V = \lim_{l \to \infty} c_l \cos c_l \cos$		Substituting the values of O and U			
OR Fig. 3.3s: Cyclone repursasor Fig. 3.s: Cyclone repurs	The Last Cycline separate V = linear or tangential velocity, m/s The separating force can be grown as follows: $F = \sqrt{\frac{1}{E^2}} \cdot \frac{V}{V}$ The separating force or separation factor of cyclone can be given by the following equation: Performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{f_1}{V} \cdot \frac{V}{V}$ It has been found that are 3' increases the separation becomes more effective. Problem: All carrying particles of density 1200 by m³ and an average diameter of 22 micros meeters a cyclone diameter as linear velocity of 20 m²/s. Calculate the centrifugal force acting midwilly in the cyclone and the separation factor of the cyclone.		• •			
OR Fig. 3.3s: Cyclone repursasor Fig. 3.s: Cyclone repurs	The Last Cycline separate V = linear or tangential velocity, m/s The separating force can be grown as follows: $F = \sqrt{\frac{1}{E^2}} \cdot \frac{V}{V}$ The separating force or separation factor of cyclone can be given by the following equation: Performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{f_1}{V} \cdot \frac{V}{V}$ It has been found that are 3' increases the separation becomes more effective. Problem: All carrying particles of density 1200 by m³ and an average diameter of 22 micros meeters a cyclone diameter as linear velocity of 20 m²/s. Calculate the centrifugal force acting midwilly in the cyclone and the separation factor of the cyclone.		$rac{m_f - m_u}{m_o - m_f} m_o (1 - m_u)$			
OR Fig. 3.3s: Cyclone repursasor Fig. 3.s: Cyclone repurs	The Last Cycline separate V = linear or tangential velocity, m/s The separating force can be grown as follows: $F = \sqrt{\frac{1}{E^2}} \cdot \frac{V}{V}$ The separating force or separation factor of cyclone can be given by the following equation: Performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{f_1}{V} \cdot \frac{V}{V}$ It has been found that are 3' increases the separation becomes more effective. Problem: All carrying particles of density 1200 by m³ and an average diameter of 22 micros meeters a cyclone diameter as linear velocity of 20 m²/s. Calculate the centrifugal force acting midwilly in the cyclone and the separation factor of the cyclone.		$(m_0 - m_u)^2 (1 - m_t) m_t$			
The supersing force can be given as follows: $F = W \sqrt{\frac{V}{k^2 R^2}} + \frac{V}{W} = \frac{V}{k^2 R^2} + \frac{V}{W} = \frac{V}{k^2 R^2} + \frac{V}{k^2 R^2} = $	TIE_138: Cyclone separator V = linear or tangential velocity, **\textit{st} V = linear or tangential velocity, **\textit{st} The separating force can be given as follows: \[F = W \sum \frac{V}{x} = 1 \] The performance factor of cyclone can be given by the following equation: Performance factor, \$5 = \frac{f}{W} = \frac{V}{W} = \frac{2}{N} = 1 \] It has been found that are \$5' increases the separation becomes more effective. Problem: All carrying particles of density \$100 \text{ kg} \cdots \frac{N}{N} = \f		2.8	7	CO2	τ.
The separation force can be given as follows: $F = W^{-\frac{1}{N}} = 1.38 \text{ is Cyclone separator}$ The separating force can be given as follows: $F = W^{-\frac{1}{N}} = 1.31 \text{ is Cyclone can be given by the following opation:}$ The performance of separation factor of cyclone can be given by the following opation: Performance factor, $S = \frac{U}{W} = \frac{V}{R}$ It has been found that as $S^{-\frac{1}{N}}$ in and an average diameter of 22 micros mether a cyclone of 600 med diameter at linear velocity of 20 m^{-1} . Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone and cyclone and cyclone and cyclone and cyclone and cyclone and cyclone a	Fig. 1.36: Cyclone separator $V = \text{linear or tangential velocity, } m/s$ The separating force angential velocity, m/s The separating force angential velocity, m/s $F = w\sqrt{\frac{y}{F}} + 1$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{v_1}{F} = \frac{y}{F}$ It has been found that as S increases the separation becomes more effective. Problem: Air carrying particle of defensity 1200 fg/ v^2 and an average diameter of 20 microse netters a cyclone of 600 mediameter at allores velocity of 200 m/s . Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.		OR	,	003	
The separation force can be given as follows: $F = W^{-\frac{1}{N}} = 1.38 \text{ is Cyclone separator}$ The separating force can be given as follows: $F = W^{-\frac{1}{N}} = 1.31 \text{ is Cyclone can be given by the following opation:}$ The performance of separation factor of cyclone can be given by the following opation: Performance factor, $S = \frac{U}{W} = \frac{V}{R}$ It has been found that as $S^{-\frac{1}{N}}$ in and an average diameter of 22 micros mether a cyclone of 600 med diameter at linear velocity of 20 m^{-1} . Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone and cyclone and cyclone and cyclone and cyclone and cyclone and cyclone a	Fig. 1.36: Cyclone separator $V = \text{linear or tangential velocity, } m/s$ The separating force angential velocity, m/s The separating force angential velocity, m/s $F = w\sqrt{\frac{y}{F}} + 1$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{v_1}{F} = \frac{y}{F}$ It has been found that as S increases the separation becomes more effective. Problem: Air carrying particle of defensity 1200 fg/ v^2 and an average diameter of 20 microse netters a cyclone of 600 mediameter at allores velocity of 200 m/s . Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	(a)				
Fig. 2.34 : Cyclone separator $V = \text{linear or tangential velocity}, m/s$ The separating force can be given as follows: $F = W \sqrt{\frac{V}{M^2}} + 1$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{f_1}{W} = \frac{V}{R}$ It has been found that as 'S' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 $\log_2 m^2$ and an average diameter of 23 micros enter a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	Fig. 1.3s: Cyclone separator $V = \text{linear or tangential velocity, } m/s$ The separating force can be given as follows: $F = w \sqrt{\frac{1}{g^2R^2}} + 1$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{G}{M} = \frac{V}{g^2R}$ It has been found that as: 'S' increases the separation becomes more effective. Problem: Air carpying particles of density 1200 g^2 g^2 and an average diameter of 25 micron enters a cyclone of 600 mm diameter at ilinear velocity of 20 m/s . Calculate the centificial force acting radially in the cyclone and the separation factor of the					
Fig. 2.34 : Cyclone separator $V = \text{linear or tangential velocity}, m/s$ The separating force can be given as follows: $F = W \sqrt{\frac{V}{M^2}} + 1$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{f_1}{W} = \frac{V}{R}$ It has been found that as 'S' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 $\log_2 m^2$ and an average diameter of 23 micros enter a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	Fig. 1.3s: Cyclone separator $V = \text{linear or tangential velocity, } m/s$ The separating force can be given as follows: $F = w \sqrt{\frac{1}{g^2R^2}} + 1$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{G}{M} = \frac{V}{g^2R}$ It has been found that as: 'S' increases the separation becomes more effective. Problem: Air carpying particles of density 1200 g^2 g^2 and an average diameter of 25 micron enters a cyclone of 600 mm diameter at ilinear velocity of 20 m/s . Calculate the centificial force acting radially in the cyclone and the separation factor of the		→			
Fig. 2.34 : Cyclone separator $V = \text{linear or tangential velocity}, m/s$ The separating force can be given as follows: $F = W \sqrt{\frac{V}{M^2}} + 1$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{f_1}{W} = \frac{V}{R}$ It has been found that as 'S' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 $\log_2 m^2$ and an average diameter of 23 micros enter a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	Fig. 1.3s: Cyclone separator $V = \text{linear or tangential velocity, } m/s$ The separating force can be given as follows: $F = w \sqrt{\frac{1}{g^2R^2}} + 1$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{G}{M} = \frac{V}{g^2R}$ It has been found that as: 'S' increases the separation becomes more effective. Problem: Air carpying particles of density 1200 g^2 g^2 and an average diameter of 25 micron enters a cyclone of 600 mm diameter at ilinear velocity of 20 m/s . Calculate the centificial force acting radially in the cyclone and the separation factor of the		→ ¥ a [c ₄]			
Fig. 2.28: Cyclone separator $V = \text{linear or tangential velocity, } m/s$ The separating force can be given as follows: $F = W \sqrt{\frac{V}{s^2 R^2} + 1}$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{c_f}{W} = \frac{V^2}{W} = \frac{V^2}{R}$ It has been found that as 'S' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 kg/m² and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	Fig. 2.26 : Cyclone separator $V = \text{linear or tangential velocity, } m/s$ The separating force can be given as follows: $F = w \sqrt{\frac{V^2}{g^2 R^2} + 1}$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{G}{W} = \frac{V^2}{g^2 R}$ It has been found that as 'S' increases the separation becomes more effective. Problem : Air carrying particles of density 1200 $\log m^2$ and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the		H=2103d			
Fig. 2.28: Cyclone separator $V = \text{linear or tangential velocity, } m/s$ The separating force can be given as follows: $F = W \sqrt{\frac{V}{s^2 R^2} + 1}$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{c_f}{W} = \frac{V^2}{W} = \frac{V^2}{R}$ It has been found that as 'S' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 kg/m² and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	Fig. 2.26 : Cyclone separator $V = \text{linear or tangential velocity, } m/s$ The separating force can be given as follows: $F = w \sqrt{\frac{V^2}{g^2 R^2} + 1}$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{G}{W} = \frac{V^2}{g^2 R}$ It has been found that as 'S' increases the separation becomes more effective. Problem : Air carrying particles of density 1200 $\log m^2$ and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the		- 1 0 + 1 VB			
Fig. 2.28: Cyclone separator $V = \text{linear or tangential velocity, } m/s$ The separating force can be given as follows: $F = W \sqrt{\frac{V}{s^2 R^2} + 1}$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{c_f}{W} = \frac{V^2}{W} = \frac{V^2}{R}$ It has been found that as 'S' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 kg/m² and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	Fig. 2.26 : Cyclone separator $V = \text{linear or tangential velocity, } m/s$ The separating force can be given as follows: $F = w \sqrt{\frac{V^2}{g^2 R^2} + 1}$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{G}{W} = \frac{V^2}{g^2 R}$ It has been found that as 'S' increases the separation becomes more effective. Problem : Air carrying particles of density 1200 $\log m^2$ and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
Fig. 2.28: Cyclone separator $V = \text{linear or tangential velocity, } m/s$ The separating force can be given as follows: $F = W \sqrt{\frac{V}{s^2 R^2} + 1}$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{c_f}{W} = \frac{V^2}{W} = \frac{V^2}{R}$ It has been found that as 'S' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 kg/m² and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	Fig. 2.26 : Cyclone separator $V = \text{linear or tangential velocity, } m/s$ The separating force can be given as follows: $F = w \sqrt{\frac{V^2}{g^2 R^2} + 1}$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{G}{W} = \frac{V^2}{g^2 R}$ It has been found that as 'S' increases the separation becomes more effective. Problem : Air carrying particles of density 1200 $\log m^2$ and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the					
Fig. 2.28: Cyclone separator $V = \text{linear or tangential velocity, } m/s$ The separating force can be given as follows: $F = W \sqrt{\frac{V}{s^2 R^2} + 1}$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{c_f}{W} = \frac{V^2}{W} = \frac{V^2}{R}$ It has been found that as 'S' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 kg/m² and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	Fig. 2.26 : Cyclone separator $V = \text{linear or tangential velocity, } m/s$ The separating force can be given as follows: $F = w \sqrt{\frac{V^2}{g^2 R^2} + 1}$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{G}{W} = \frac{V^2}{g^2 R}$ It has been found that as 'S' increases the separation becomes more effective. Problem : Air carrying particles of density 1200 $\log m^2$ and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the					
Fig. 2.28: Cyclone separator $V = \text{linear or tangential velocity, } m/s$ The separating force can be given as follows: $F = W \sqrt{\frac{V}{s^2 R^2} + 1}$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{c_f}{W} = \frac{V^2}{W} = \frac{V^2}{R}$ It has been found that as 'S' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 kg/m² and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	Fig. 2.26 : Cyclone separator $V = \text{linear or tangential velocity, } m/s$ The separating force can be given as follows: $F = w \sqrt{\frac{V^2}{g^2 R^2} + 1}$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{G}{W} = \frac{V^2}{g^2 R}$ It has been found that as 'S' increases the separation becomes more effective. Problem : Air carrying particles of density 1200 $\log m^2$ and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the					
Fig. 2.28: Cyclone separator $V = \text{linear or tangential velocity, } m/s$ The separating force can be given as follows: $F = W \sqrt{\frac{V}{s^2 R^2} + 1}$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{c_f}{W} = \frac{V^2}{W} = \frac{V^2}{R}$ It has been found that as 'S' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 kg/m² and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	Fig. 2.26 : Cyclone separator $V = \text{linear or tangential velocity, } m/s$ The separating force can be given as follows: $F = w \sqrt{\frac{V^2}{g^2 R^2} + 1}$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{G}{W} = \frac{V^2}{g^2 R}$ It has been found that as 'S' increases the separation becomes more effective. Problem : Air carrying particles of density 1200 $\log m^2$ and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the		\ / зн			
Verification of tangential velocity, m/s . The separating force can be given as follows: $F = W \frac{V^2}{g^2 R^2} + 1$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{f_1}{W} = \frac{V^2}{g R}$ It has been found that as "5" increases the separation becomes more effective. Problem: Alt carrying particles of density 1200 (g/m^2) and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	We linear or tangential velocity, m/s The separating force can be given as follows: $F = W \sqrt{\frac{V^2}{g^2 R^2} + 1}$ 2.11 The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{V_c}{M} = \frac{V_c}{g}$ It has been found that as 'S' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 kg/m² and an average diameter of 2.5 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.					
Verification of tangential velocity, m/s . The separating force can be given as follows: $F = W \frac{V^2}{g^2 R^2} + 1$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{f_1}{W} = \frac{V^2}{g R}$ It has been found that as "5" increases the separation becomes more effective. Problem: Alt carrying particles of density 1200 (g/m^2) and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	We linear or tangential velocity, m/s The separating force can be given as follows: $F = W \sqrt{\frac{V^2}{g^2 R^2} + 1}$ 2.11 The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{V_c}{M} = \frac{V_c}{g}$ It has been found that as 'S' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 kg/m² and an average diameter of 2.5 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.					
Verification of tangential velocity, m/s . The separating force can be given as follows: $F = W \frac{V^2}{g^2 R^2} + 1$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{f_1}{W} = \frac{V^2}{g R}$ It has been found that as "5" increases the separation becomes more effective. Problem: Alt carrying particles of density 1200 (g/m^2) and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	We linear or tangential velocity, m/s The separating force can be given as follows: $F = W \sqrt{\frac{V^2}{g^2 R^2} + 1}$ 2.11 The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{V_c}{M} = \frac{V_c}{g}$ It has been found that as 'S' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 kg/m² and an average diameter of 2.5 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.					
Verification of tangential velocity, m/s . The separating force can be given as follows: $F = W \frac{V^2}{g^2 R^2} + 1$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{f_1}{W} = \frac{V^2}{g R}$ It has been found that as "5" increases the separation becomes more effective. Problem: Alt carrying particles of density 1200 (g/m^2) and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	We linear or tangential velocity, m/s The separating force can be given as follows: $F = W \sqrt{\frac{V^2}{g^2 R^2} + 1}$ 2.11 The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{V_c}{M} = \frac{V_c}{g}$ It has been found that as 'S' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 kg/m² and an average diameter of 2.5 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.					
Verification of tangential velocity, m/s . The separating force can be given as follows: $F = W \frac{V^2}{g^2 R^2} + 1$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{f_1}{W} = \frac{V^2}{g R}$ It has been found that as "5" increases the separation becomes more effective. Problem: Alt carrying particles of density 1200 (g/m^2) and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	We linear or tangential velocity, m/s The separating force can be given as follows: $F = W \sqrt{\frac{V^2}{g^2 R^2} + 1}$ 2.11 The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{V_c}{M} = \frac{V_c}{g}$ It has been found that as 'S' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 kg/m² and an average diameter of 2.5 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.					
Verification of tangential velocity, m/s . The separating force can be given as follows: $F = W \frac{V^2}{g^2 R^2} + 1$ The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{f_1}{W} = \frac{V^2}{g R}$ It has been found that as "5" increases the separation becomes more effective. Problem: Alt carrying particles of density 1200 (g/m^2) and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	We linear or tangential velocity, m/s The separating force can be given as follows: $F = W \sqrt{\frac{V^2}{g^2 R^2} + 1}$ 2.11 The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{V_c}{M} = \frac{V_c}{g}$ It has been found that as 'S' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 kg/m² and an average diameter of 2.5 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.					
The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{f_1}{W} = \frac{VS}{R}$ It has been found that as 'S' increases the separation becomes more effective. Problem: Alt carrying particles of density 1200 fg/m² and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the	The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{f_f}{M} = \frac{VR}{R}$ It has been found that as '5' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 kg/m² and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.		Fig. 2.26: Cyclone separator			
F = $W \sqrt{\frac{V^2}{g^2}R^2} + 1$ 2.11 The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{C_f}{W} = \frac{V^2}{W^2}$ It has been found that as 'S' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 kg/m² and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	F = $W \sqrt{\frac{V^2}{g^2 R^2}} + 1$ 2.11 The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{I_V}{W} = \frac{V^2}{g R}$ 2.12 It has been found that as 'S' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 kg/m² and an average diameter of 25 micron enters a syclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.		The separating force can be given as follows:			
The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{c_f}{W} = \frac{V^2}{W}$ It has been found that as 'S' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 kg/m² and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	The performance or separation factor of cyclone can be given by the following equation: Performance factor, $S = \frac{C_f}{W} = \frac{V^2}{gR}$ It has been found that as '5' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 kg/m² and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the		F = W \(\frac{V}{2001 + 1} \)			
Performance factor, $S = \frac{f_1}{W} = \frac{V^2}{gR}$ It has been found that as 'S' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 kg/m² and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m²/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	Performance factor, $S = \frac{C_L}{N} = \frac{V_L}{R}$ It has been found that as '5' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 kg/m² and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.		The performance or separation factor of curloss and a series are a series and a ser			
It has been found that as '5' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 kg/m² and an average diameter of 25 microe enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	It has been found that as '5' increases the separation becomes more effective. Problem: Alt carrying parkeles of density 1200 kg/m² and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.					
It has been found that as '5' increases the separation becomes more effective. Problem: Air carrying particles of density 1200 kg/m² and an average diameter of 25 microe enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	It has been found that as '5' increases the separation becomes more effective. Problem: Alt carrying parkeles of density 1200 kg/m² and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.		Performance factor, $S = \frac{c_1}{W} = \frac{VI}{gR}$			
25 micron enters acyclone of 60m milameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	25 micron enters a zerolone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.		it has been found that as '5' increases the separation become a			
the communal force acting radially in the cyclone and the separation factor of the cyclone.	the contribugal force acting radially in the cyclone and the separation factor of the cyclone.		25 micron enters a carrying particles of density 1200 kg/m² and an average dismostration			
	5 000		the centrifugal force acting radially in the cyclone and the separation force			
	5 CO3 L	1		1	1	1
	3 CO3 L					ł

Problem 1 A cyclore separation having the following specifications is used to collect particles of specific gravity 1.2. Cyclore disameter = 180 cm Als in lact disameter = 30 cm Separating height = 2.5 of dia. of inlet Hallis pitch = 157 Inlet width = 10 cm Entry particle velocity = 13 m/s Compute the smallest particle which can be collected. Estimate the pressure drop through the unit. (AKS 1985) Solution : The pressure drop through the cyclone is estimated by the following equations assuming $K = 0.5$. $dp = \frac{1.2 \text{ W h}}{K E^2 \left(\frac{L}{d}\right)^2 \left(\frac{M}{2}\right)^2}$ $= \frac{0.5 \times 0.3 \times 0.3 \left(\frac{0.75}{1.8}\right)^{\frac{M}{1.8}}}{\left(\frac{M}{2}\right)^2}$ The entry height was calculated at the centre line of cyclone considering 15' helis pitch $dp = \frac{0.648}{0.0356}$ $= 19.27.$ The smallest particle size removed by the unit can be estimated by the following equation. $D_p = \sqrt{\frac{9 \mu E}{2 \times NV (O_p - \rho_p) \left(\frac{4 N}{E}\right)^2}}$ $= \sqrt{\frac{9 \mu E}{2 \times NV (O_p - \rho_p) \left(\frac{4 N}{E}\right)^2}}$ $= \sqrt{\frac{9 \mu E}{2 \times NV (O_p - \rho_p) \left(\frac{4 N}{E}\right)^2}}$ $= \sqrt{\frac{9 \mu E}{2 \times NV (O_p - \rho_p) \left(\frac{4 N}{E}\right)^2}}$ $= \sqrt{\frac{9 \mu E}{2 \times NV (O_p - \rho_p) \left(\frac{4 N}{E}\right)^2}}$ $= \sqrt{\frac{9 \mu E}{2 \times NV (O_p - \rho_p) \left(\frac{4 N}{E}\right)^2}}$ $= \sqrt{\frac{9 \mu E}{2 \times NV (O_p - \rho_p) \left(\frac{4 N}{E}\right)^2}}$ $= \sqrt{\frac{9 \mu E}{2 \times NV (O_p - \rho_p) \left(\frac{4 N}{E}\right)^2}}$ $= \sqrt{\frac{9 \mu E}{2 \times NV (O_p - \rho_p) \left(\frac{4 N}{E}\right)^2}}$ $= \sqrt{\frac{9 \mu E}{2 \times NV (O_p - \rho_p) \left(\frac{4 N}{E}\right)^2}}}$ $= \sqrt{\frac{9 \mu E}{2 \times NV (O_p - \rho_p) \left(\frac{4 N}{E}\right)^2}}}$ $= \sqrt{\frac{9 \mu E}{2 \times NV (O_p - \rho_p) \left(\frac{4 N}{E}\right)^2}}$ $= \sqrt{\frac{9 \mu E}{2 \times NV (O_p - \rho_p) \left(\frac{4 N}{E}\right)^2}}}$ $= \sqrt{\frac{9 \mu E}{2 \times NV (O_p - \rho_p) \left(\frac{4 N}{E}\right)^2}}}$ $= \sqrt{\frac{9 \mu E}{2 \times NV (O_p - \rho_p) \left(\frac{4 N}{E}\right)^2}}}$ $= \sqrt{\frac{9 \mu E}{2 \times NV (O_p - \rho_p) \left(\frac{4 N}{E}\right)^2}}}$ $= \sqrt{\frac{9 \mu E}{2 \times NV (O_p - \rho_p) \left(\frac{4 N}{E}\right)^2}}}$ $= \sqrt{\frac{9 \mu E}{2 \times NV (O_p - \rho_p) \left(\frac{4 N}{E}\right)^2}}}$ $= \sqrt{\frac{9 \mu E}{2 \times NV (O_p - \rho_p) \left(\frac{4 N}{E}\right)^2}}}$ $= \sqrt{\frac{9 \mu E}{2 \times NV (O_p - \rho_p) \left(\frac{4 N}{E}\right)^2}}}$ $= \sqrt{\frac{9 \mu E}{2 \times NV (O_p - \rho_p) \left(\frac{4 N}{E}\right)^2}}}$ $= \sqrt{\frac{9 \mu E}{2 \times NV (O_p - \rho_p) \left(\frac{4 N}{E}\right)^2}}}$ $= \sqrt{\frac{9 \mu E}{2 \times NV (O$					-
about the problem of the control of				fix gravity 1.2. not diameter = 180 cm let diameter = 30 cm sating height = 2.5 of dia. of inlet Helix pitch = 15° Inlet width = 10 cm ticle velocity = 13 m/z smallest particle which can be collected. Estimate the pressure	b)
$dp = \frac{12 \text{ W}}{K E^2} \left(\frac{L}{d}\right)^{\frac{M}{4}} \left(\frac{L}{d}\right)^{\frac{M}{4}}$ $= \frac{0.5 \times 0.3 \times 0.3 \left(\frac{0.75}{1.8}\right)^{\frac{M}{4}} \left(\frac{1.8}{1.8}\right)^{\frac{M}{4}}}{\left(\frac{1.8}{1.8}\right)^{\frac{M}{4}}}$ The entry height was calculated at the centre line of cyclone considering 15' helix pitch $dp = \frac{0.648}{0.0336} = \frac{19.27}{19.25}.$ The smallest particle size removed by the unit can be estimated by the following equation. $D_p = \sqrt{\frac{9 \mu E}{2 \pi N V (\rho_p - \rho_p) \left(\frac{4R}{E}\right)^{\frac{M}{4}}}} = \sqrt{\frac{9 \times 5 \times 10^{-3} \times 0.3}{2 \times 3.1416 \times 2 \times 15 \times 10^{-3} \times 0.3}}$ $\mu = \text{viscosity of air} = 1.53 \times 10^{-3} kg/m - \epsilon$ $\rho_p = \text{density of air} = 1.233 \times 10^{-3} kg/m - \epsilon$				ressure drop through the cyclone is estimated by the following	
$dp = \frac{0.638}{0.0036}$ $= 19.27.$ The smallest particle size removed by the unit can be estimated by the following equation. $D_p = \sqrt{\frac{9 \mu E}{2 \pi N V (\rho_p - \rho_p) \left(\frac{4R^3}{E}\right)}}$ $= \sqrt{\frac{9 \times 5 \times 10^{-3} \times 0.3}{2 \times 3.1416 \times 2 \times 15 (1200 - 1.293) \left(\frac{4 \times 0.9}{0.3}\right)^{0.3}}}$ $\mu = \text{viscosity of air} = 1.293 \log m - \rho_p = \text{density of air} = 1.293 \log m - \rho_p$				12 W h $EF\left(\frac{1}{4}\right)^{t}\left(\frac{1}{4}\right)^{t}\left(\frac{1}{4}\right)^{t}$ 12 \(\text{0.1}\times 0.54\) 25 \(\text{0.3}\times 0.3\left(\frac{0.73}{1.8}\right)^{t}\left(\frac{1.8}{1.8}\right)^{t}\)	
The smallest particle size removed by the unit can be estimated by the following equation. $D_p = \sqrt{\frac{9 \muE}{2 \piNV(\rho_p - \rho_s) \left[\frac{4R}{E}\right]^6}} = \sqrt{\frac{9 \muE}{2 \piNV(\rho_p - \rho_s) \left[\frac{4R}{E}\right]^6}} = \sqrt{\frac{3 \pi3 \times 10^{-3} \times 0.3}{2 \times 3.1416 \times 2 \times 15 \left(1200 - 1.290\right) \left[\frac{4 \times 0.9}{0.3}\right]^{6.5}}}$ $\mu = viscosity of air = 5 \times 10^{-3} kg/m^{-g}$ $\rho_s = density of air = 1.293 kg/m^{-g}$					
$D_{p} = \sqrt{\frac{9 \mu E}{2 \pi N V (\rho_{p} - \rho_{s}) \left(\frac{4R}{E}\right)^{4}}}$ $= \sqrt{\frac{9 \times 3 \times 10^{-3} \times 0.3}{9 \times 3 \times 15 (1200 - 1.293) \left(\frac{4 \times 0.9}{0.3}\right)^{5}}}$ $\mu = \text{viscosity of air} = 5 \times 10^{-3} \text{kg/m} = \rho_{s} = \text{density of air} = 1.293 \frac{\chi_{p}}{\chi_{p}}$				= 19_Z/. article size removed by the unit can be estimated by the following	
2 × 3.1416 × 2 × 15 (1200 – 1.293) $\left(\frac{4 \times 0.9}{0.5}\right)^{0.5}$ μ = viscosity of air = 5 × 10 ⁻³ kg/m ^{-g} ρ_s = density of air = 1.293 kg/m ³				rest.	
$\mu = viscosity of air = 5 \times 10^{-3} kg/m^{-g}$ $Q_a = density of air = 1.293 kg/m^3$				A.	
$\rho_{\rm e}$ = density of air = 1.293 kg/m ³				$\frac{2 \times 3.1616 \times 2 \times 15 (1200 - 1290)}{0.3}$ cosity of air = 5 × 10 ⁻³ be/m-4	
$D_{\rm pe} = \sqrt{13.5 \times 10^{-3}}$				sity of air = 1.293 k_Z/m^3	
7.817×10°				35×10° -	
= 1.314 × 10 ⁻³ m = 13.14 × 10 ⁻³ mm or 13 <i>nucrons.</i> 7 CO3	L4	602	7		

USN	
-----	--

(Accredited by NAAC with A+ Grade) Department of Agriculture Engineering

Continuous Internal Evaluation Test-1 AY 2023-24

Course Title: AGRICULTURAL PROCES	Course Code: BAG403	
Date: 09/07/2024	Time: 3:00 P.M – 04:30 P.M	Semester/Section: IV th
Faculty: Dr. K. RAJU YADAV	Max. Marks: 30	

Note: Answer ONE FULL question from each Module.

Q. No.		Questions	Marks	COs	BTL
		Module - 3			
1	a)	During the evaluation of air screen grain cleaner with two screen			
		the followings were observed			
		i. The impurities present in feed were 6.5%			
		ii. The impurities present in clean grain were 0.5%			
		iii. The outflow of blower contained 0.2% clean seed			
		iv. The overflow of the first screen contained 1% clean seed			
		v. The underflow contained 0.5% clean seed			
		Compute the cleaning efficiency of the cleaner	5	CO4	L3
	b)	Explain about rotary screen cleaner and pneumatic separator	5	CO4	L2
	c)	Explain about Magnetic separator with neat sketch	5	CO4	L.2
		OR			
2	a)	Explain about colour separator with neat sketch	5	CO4	L2
	b)	Explain about Ideal and Actual screen with neat sketch	5	CO4	L2
	c) Design consideration of an air screen grain cleaner		5	CO4	L1
		Module - 5			
3	a)	Explain about the modern rice milling plant with flow chart	8	CO5	L2
b) Write a flowchart for dry & wet milling of pulses		7	CO5	L1	
		OR	,		LI
4	a)	What is condensation? Explain about parboiling steps	6	CO5	L1
	b)	Differentiate between hydraulic and screw press with neat sketch	9	-	-
	Lev	els of Bloom's Taxonomy	7	CO5	L4

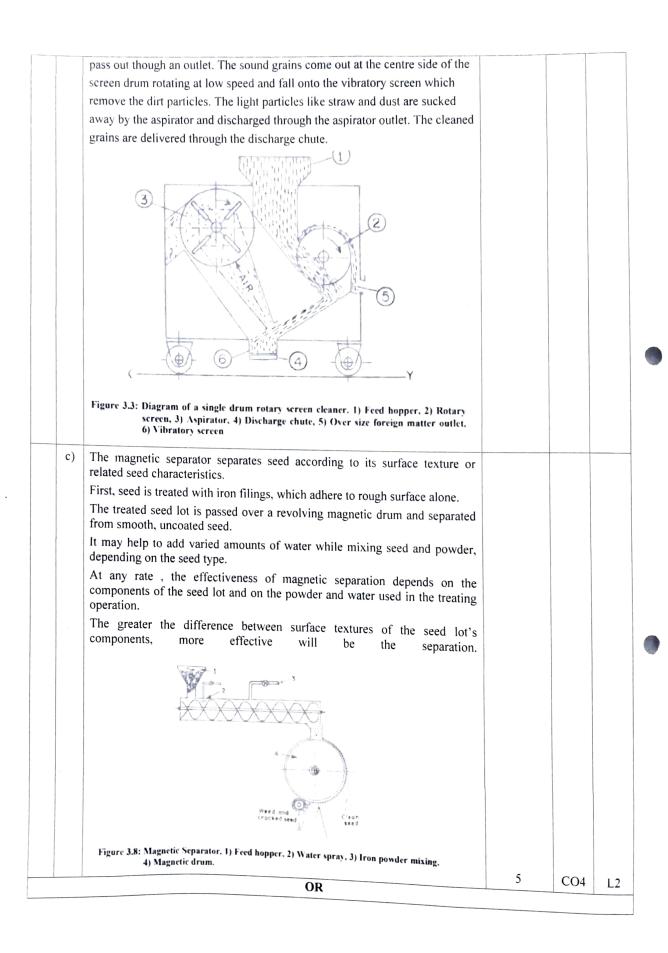
No.	L1	L2	L3	1.4	1.5	
Level	Remember	Understand	Apply	Amala	F2	L6
			тррту	Analyze	Evaluate	Create

CO4	of the basic concepts related to cleaning and size reduction	7
CO5	To acquaint the students with the milling of rice, parboiling technologies and milling of pulses	-
		1

FACULTY

IQAC MEMBER

IQAC CHAIRMAN H.O.D.


(Accredited by NAAC with A+ Grade)

Department of Agriculture Engineering Continuous Internal Evaluation Test-2,AY 2023-24

Course Title: AGRICULTURAL P	Course Code: BAG403	
Date: 09/07/2024	Time: 3:00 PM- 04.30AM	Semester/Section: IV
Faculty: Dr. K. RAJU YADAV		Max. Marks: 30

Continuous Internal Evaluation Test- 2 solution

Q. No.	Questions	Marks	COs	BTL
	Module 3			
1 a)	3. i) fraction of clean seed in feed $= 100 - 6.5 = 93.5$ or 0.935 ii) fraction of clean seed in clean grain outlet $= 100 - 0.5 = 99.5$ or 0.995 iii) fraction of clean seed in foreign matter outlets $= \frac{0.2}{100} + \frac{1}{100} + \frac{0.5}{100}$ $= 0.002 + 0.01 + 0.005$ $= 0.017$ Then E = 0.0995 , F = 0.935 and G = 0.017 Therefore, Cleaning efficiency $= \frac{E(F - G)(E - F)(1 - G)}{F(E - G)^2(1 - F)}$ $= \frac{0.995(0.935 - 0.017)(0.995 - 0.935)(1 - 0.017)}{0.935(0.995 - 0.017)^2(1 - 0.935)}$ $= 91.18\%$ 4 i) Fraction of clean seed at clean seed out let, E = $\frac{246.5}{250.0} = 0.986$ ii) Fraction of clean seed in-foreign matter outlets $G = \frac{231.25}{250.0} = 0.925$ iv) Fraction of clean seed in-foreign matter outlets $G = \frac{1.25}{250.0} + \frac{4.5}{250.0} + \frac{2.0}{250.0} = 0.031$ Therefore, Cleaning efficiency $= \frac{E(F - G)(E - F)(1 - G)}{F(E - G)^2(1 - F)}$ $= \frac{0.986(0.925 - 0.031)(0.986 - 0.925)(1 - 0.031)}{0.925(0.986 - 0.031)^2(1 - 0.925)}$ $= 82.34\%$	5	CO4	L3
b)	Rotary screen cleaner: The rotary screen cleaner has normally circular decks. Their motion is circular in horizontal plane. These have either single or double drum. A single drum rotary screen cleaner is shown in Figure 3.3. The machine consists of a rotary screen, aspirator and hopper and equipped with an electric motor, which gives drive to the rotary screen and the aspirator. The mixture is fed into the hopper. The sound grains pass through the screen perforation into the centre of the screen drum, whereas oversized material is retained above and	5	CO4	L2

2	a)	The colour separator is used to separate discoloured seed, greatly of lower quality.			
		Separation based on colour is necessary because the density and dimensions of discoloured seed are the same as those of sound seed, so other machines are not effective for separation.			
		Electronic colour separation uses photocells to compare the seed colour with "background" which are selected to reflect the same light as the good seed.			
		Seed that differs in colour is detected by the photo cells, which generate an electric impulse.			
		The impulse activates an air jet to blow away the discoloured seed.	5	CO4	L2
	b)	The basic purpose of any screen is to separate a mixture of particles / items of different sizes into two distinct fractions. These fractions are, (1) the - underflow, the particles that pass through the screen, and (2) the overflow oversize, the materials that are retained over the screen. A screen can be termed as ideal screen that separates the mixture in such a way that the largest particle of underflow is just smaller than screen opening, while the smallest particle of overflow is just larger than the screen opening. But in practice a given screen does not gives perfect separation as stated above, and is called actual screen. The underflow may contain material coarser than screen size, whereas the overflow may contain particles smaller than screen size as shown in Figure 3.10.			
		100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
		re 3.10: Graphical representation of various flows of a screen	5	CO4	L2
	c)	Properties of Grains:			
		Weight and Size: Different grains have varying weights and sizes, which affect the design of the screens and the airflow required.			
		Moisture Content: The moisture content of the grains can influence the cleaning process, as wetter grains may require different handling			
		compared to dry grains1.			

Perforation Size: The size of the perforations in the screens must be appropriate for the specific type of grain being cleaned to ensure effective separation of debris.

Screen Angle and Movement: The angle at which the screens are set and their movement (vibration or oscillation) are crucial for efficient cleaning2.

Airflow System:

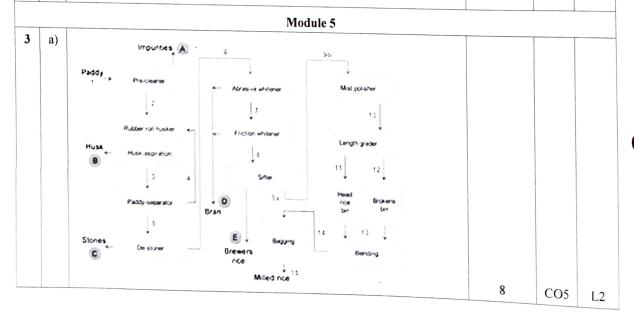
Blower Capacity: The blower must be powerful enough to create the necessary airflow to separate lighter chaff and debris from the grains.

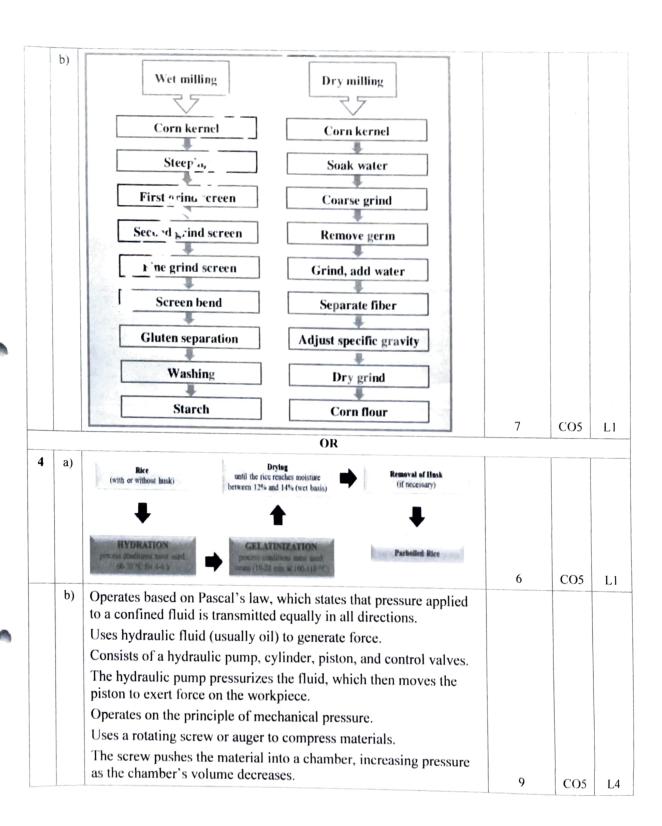
Airflow Adjustment: The ability to adjust the airflow is important to cater to different types of grains and varying levels of impurities 1.

Ease of Operation:

User-Friendly Design: The machine should be easy to operate and maintain, with accessible controls and clear instructions.

Safety Features: Incorporating safety features to protect the operator from moving parts and dust is essential1.


Material Selection:


Durability: The materials used in construction should be durable and resistant to wear and tear, especially for parts in contact with grains and debris.

Corrosion Resistance: Using materials that resist corrosion will extend the lifespan of the machine 1.

Power Source:

Variable Speed Motor: A motor with variable speed settings allows for adjustments based on the type of grain and the desired cleaning efficiency1.

USN

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY

(Accredited by NAAC with A+ Grade)

Department of Agriculture Engineering

Continuous Internal Evaluation Test-3 AV 2023-24

Course Title: AGRICULTURAL PROCES	S ENGINEERING	Course Code: BAG403
Date: 26/07/2024	Time: 3:00 P.M – 04:30 P.M Semester/Section: IV	
Faculty: Dr. K. RAJU YADAV		Max. Marks: 30

Note: Answer ONE FULL question from each Module.

	No.	Questions		COs	BTL
		Module 4	Marks	COS	DIL
1	a)	Explain about size reduction procedure	3	CO5	L2
	b)	Explain about jaw crusher and ball mill with eat sketch	6	CO5	L2
	c)	Derive the equation for crushing efficiency or energy requirement		CO5	L3
		OR	6	000	
2	a)	Explain about gyratory crusher and hammer mill with a neat sketch	6	CO4	L2
	b)	Write short note on Ratzinger's law, Kick's law and Bond's law	4	CO4	L1
	c)	Problem: In a wheat milling experiment it was found that to grind 4.33 mm sized grains to IS sieve 35 (0.351 mm opening), the power requirement was 8 KW. Calculate the power requirement for milling of wheat by the same mill to IS sieve 15 (0.157 mm opening) using (1) Rittinger's law and (2) Kick's law. Feed rate of milling is 200 kg/hr.	5	CO4	L3
		Module 2			
3	a)	Derive the equation for the drag coefficient	_		
3	a) b)	Derive the equation for the drag coefficient Write about frictional properties	7	CO6	
3		Derive the equation for the drag coefficient Write about frictional properties OR	7 8	CO6	L2
3		Write about frictional properties	<u>'</u>		

No.	L1	L2	L3	L4	15	16
Level	Remember	Understand	Apply	Analyze	Evoluete	Lo
			113	1 mary 2C	Evaluate	Create

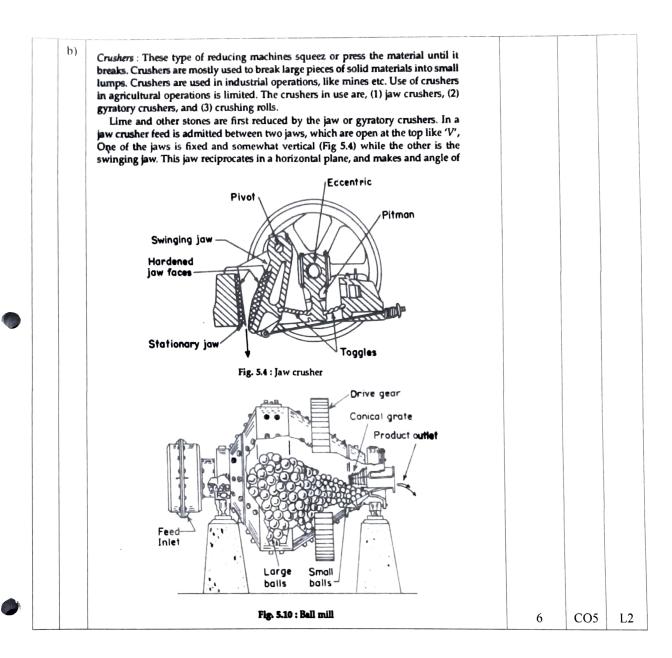
CO4	Some of the basic concepts related to cleaning and size reduction action pments
CO5	To acquaint the students with the milling of rice, parboiling technologies and milling of pulses and oil seeds
CO6	Understand the filtration equipments

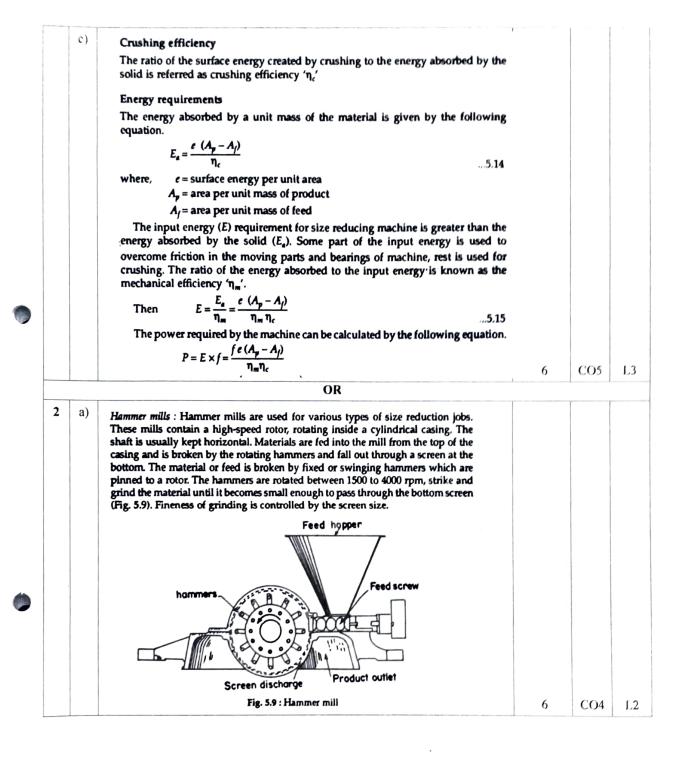
IQAC MEMBER

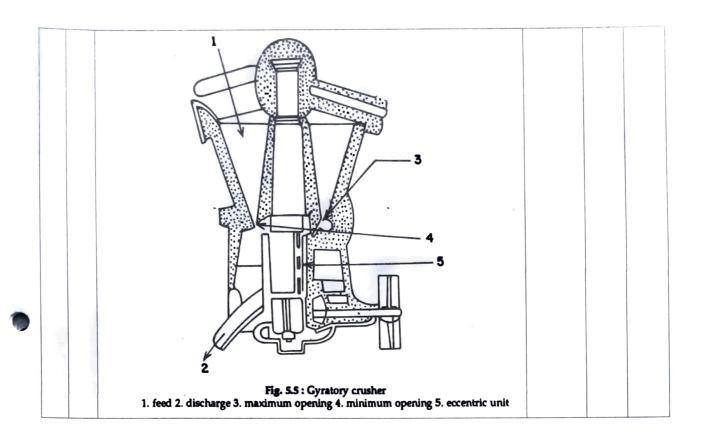
H.O.D.

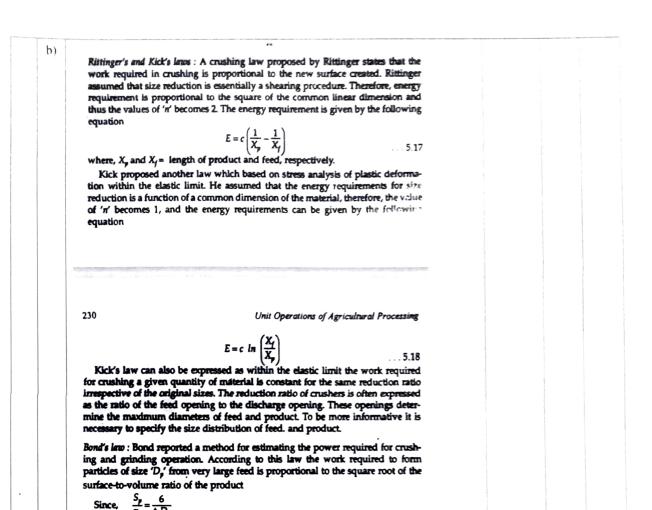
USN	

(Accredited by NAAC with A+ Grade)


Department of Agriculture Engineering


Continuous Internal Evaluation Test-3 AY 2023-24


Course Title: AGRICULTURAL PR	OCESS ENGINEERING	Course Code: BAG403
Date: 26/07/2024	Time: 3:00 P.M – 04:30 P.M	Semester/Section: IV th
Faculty: Dr. K. RAJU YADAV	•	Max. Marks: 30


Note: Answer ONE FULL question from each Module.

No.	Questions	Marks	COs	BTI
	Module 4		COS	D11
a)	Size reduction procedures			
	The size of agricultural products may be reduced by several ways, but mainly the following four methods are used in size reduction machines, (1) compression or crushing, (2) impact, (3) shearing, and (4) cutting.			
	Crushing: When an external force applied on a material excess of its strength, the material fails because of its rupture in many directions. The particles produced after crushing are irregular in shape and size. The type of material and method of force application affects the characteristics of new surfaces and particles. Food grain flour, grits and meal, ground feed for livestock are made by crushing process. Crushing is also used to extract oil from oilseeds and juice from sugarcane.			
	Impact: When a material is subjected to sudden blow of force in excess of its strength, it fails, like cracking of nut with the help of a hammer. Operation of hammer mill is an example of dynamic force application by impact method.			
	Shearing: It is a process of size reduction which combines cutting and crushing. The shearing units consist of a knife and a bar. If the edge of knife or shearing edge is thin enough and sharp, the size reduction process nears to that of cutting, whereas a thick and dull shearing edge performs like a crusher. In a good shearing unit the knife is usually thick enough to overcome the shock resulting from material hitting. In an ideal shearing unit the clearance between the bar and the knife should be as small as practicable and the knife as sharp and thin as possible.			
	Cutting: In this method, size reduction is accomplished by forcing a sharp and thin knife through the material. In the process minimum deformation and rupture of the material results and the new surface created is more or less undamaged. An ideal cutting device is a knife of excellent sharpness and it should be as thin as practicable. The size of vegetables and fruits are reduced by cutting.			

. . . 5.19

CO4

Ll

(c)	Calution (A Asserting to Division of the			
	Solution: (f) According to Rittinger's law $ \frac{P}{f} = c \left(\frac{1}{X_p} - \frac{1}{X_f} \right) $ $ \frac{8}{0.2} = c \left(\frac{1}{0.351} - \frac{1}{4.33} \right) $ $ 40 = c (2.618) $ or, $ c = 15.278 $ By putting the value of 'c' for second condition			
	Milling $\frac{P}{0.2} = 15.278 \left(\frac{1}{0.157} - \frac{1}{4.33}\right)$ or, $P = 18.75 \text{ kw}$ (ii) According to Kick's law $E = c \ln \left(\frac{X_f}{X_f}\right)$ or, $\frac{P}{f} = c \ln \left(\frac{X_f}{X_f}\right)$ $\frac{8}{0.2} = c \ln \left(\frac{4.33}{0.351}\right)$ $40 = c \times 2.5125$ or, $C = 15.92$ Putting the value of 'c' for second condition $\frac{P}{0.2} = 15.92 \left(\frac{4.33}{0.157}\right)$			
	or, $P = 10.56 \text{ kW}$	5	CO4	L3
	Module 2			
3 a)	Drag coefficient			
	of mass density, ρ_f , viscosity η , and modulus of elasticity, E , with a velocity, V then;			
	$F_{V} = f_{1} (A_{p'} \rho_{j'} \eta, E, V)$ 1.1			
	and $F_H = f_2(A_p, \rho_p, \eta, E, V)$ 12			
	Using dimensional analysis technique, the drag and lift forces are: $F_V = C_V A_p \frac{\rho_I V^2}{2}$			
	and $F_H = C_H A_p \frac{\rho_f V^2}{2}$ 1.3			
	1.4			
	The C_V and C_H are drag and lift coefficient of the material respectively. The resultant force F_R can be given as;			
	$F_R = C A_p \frac{\rho_f V^2}{2}$			
	Where, F_R = resistance drag force or weight of particle at terminal velocity, kg C = Overall drag coefficient			
	$\rho_f = \text{mass density of fluid, } \frac{Kg s^2}{m^4}$			
	$A_P = $ projected area of the particle normal to direction of motion, m^2			
	V = relative velocity between main body of fluid and material, m/s	7	CO6	L2

		Static friction: The friction may be defined as the frictional forces acting between			
		surfaces of contact at rest with respect to each other. Kinetic friction: It may be defined as the friction forces existing between the sur-			
		faces in relative motion. If F is the force of friction, and W is the force normal to the surface of contact,			
		then the coefficient of friction 'f' is given by the relationship $f = \frac{F}{W}$			
		The coefficient of friction may also be given as the tangent of the angle of the inclined surface upon which the friction force tangential to the surface and the component of the weight normal to the surfaces are acting.			
		Rolling resistance: If a round or cylindrical shaped object rolls over a horizontal surface with force, F, and the deformation in surface occurs, there will be a resultant force, R, exerted by the surface on the body as shown in Fig. 1.10. If the moment of forces is taken about point of application of R and the accelerating force is neglected, then			
		OR			
4	a)	Terminal velocity			
		· remains toward sections toward or many man toward on a			
		Terminal velocity			
		The terminal velocity of a particle may be defined as equal to the air velocity at which a particle remains in suspended state in a vertical pipe. In the condition of free fall, the particle attains a constant terminal velocity, V_{ν} the net gravitational			
		accelerating force, F_g , equals the resisting upward drag force, F_r .			
		If $V = V_{\nu} F_{g} = F_{r}$			
		By substituting the values of F_g and F_r , the terminal velocity can be expressed			
		as; [(n, - n,)]			
		$m_{p} g \left[\frac{(\rho_{p} - \rho_{l})}{\rho_{p}} \right] = 1/2 C A_{p} \rho_{l} V_{l}^{2}$ 1.6			
		$V_{i} = \left[\frac{2 W (\rho_{p} - \rho_{i})}{\rho_{p} \rho_{i} A_{p} C} \right]^{1/2}$			
		2W(n = n)			
		and $C = \frac{2W(\rho_p - \rho_f)}{V_f^2 A_p \rho_p \rho_f}$ 1.8			
		Where, V_t = terminal velocity, m/s			
		C = overall drag coefficient			
		$g = acceleration due to gravity, m/s^2$			
		$m_p = \text{mass of the particle, } kg$			
		$\rho_p = \text{mass density of particle, } \frac{kgs^2}{mt^4}$			
		$\rho_f = \text{mass density of fluid, } \frac{kgs^2}{m^4}$			
		$p_j = \text{mass density of radio}, \frac{1}{m^4}$	7	CO6	L2
	b)	The second secon	·	230	
	0)	Thermal properties Information of thermal properties of products leads towards prediction of heat			
		transfer rate for the product. For design of heating and refrigeration system for			
		food materials, information on following thermal properties are necessary.			
		1. specific heat			
		2. thermal conductivity			
		3. enthalpy			
		4. thermal diffusion 5. surface heat transfer coefficient	8	CO6	LI
		J. SMIINGE HENE MAISIEL COCHREGIE	0	000	LI

(Accredited by NAAC with A+ Grade)

USN

Department of Agriculture Engineering

Continuous Internal Evaluation Practical Exam-1 AY 2023-24

Course Title A CD COV	- Zidadalon Tiactical E	Maiii-1 A 1 2023-24
Course Title: AGRICULTURAL PROCESS	ENGINEERING	Course Code: BAG403
Date: 03/08/2024	Time: 11:00 P.M – 01:00 P.M	Semester/Section: IV th
Faculty: Dr. K. RAJU YADAV		Max. Marks: 50

Note: Answer any FOUR questions.

Q.	No.	Questions	Marks
1	a)	Explain about size reduction procedure	MIALKS
	b)	Derive the equation for power requirement for size reduction	10 M
2	a)	Write short note on Rittinger's law, Kick's law and Bond's law	
	b)	Problem: In a wheat milling experiment it was found that to grind 4.33 mm sized grains to IS sieve 35 (0.351 mm opening), the power requirement was 8 KW. Calculate the power requirement for milling of wheat by the same mill to IS sieve 15 (0.157 mm opening) using (1) Rittinger's law and (2) Kick's law. Feed rate of milling is 200 kg/hr.	10 M
3	a)	Explain about hammer mill with neat sketch	
	b)	Write about working principle of pneumatic separation with neat sketch	10 M
4		Draw the flow chart for any food processing industry and explain about it	10 M
5	a)	Explain about cyclone separator with neat sketch	
	b)	Air carrying particles of density 1200kg/m³ and an average diameter of 25 micron enters a cyclone of 600 mm diameter at linear velocity of 20 m/s. Calculate the centrifugal force acting radially in the cyclone and the separation factor of the cyclone.	10 M
6	a)	100 kg grain by drying has brought down from 18 to 13% for milling. Calculate the amount of water removed in drying.	
	b)	In a mixture of fruit juices Δx value is given as 2, Δmix value as 5, Δseg value is 8 find the mixing index.	10 M
7		Viva- voce	10 M

FACULTY SISTER

IQAC MEMBER

IQAC CHAIRMAN

HOD

(Unit of Alva's Education Foundation (R), Moodbidri) Affiliated to Visvesvaraya Technological University, Belagavi & Approved by AICTE, New Delhi. Recognized by Government of Karnataka.

A+, Accredited by NAAC & NBA (ECE & CSE)

Shobhavana Campus, MIJAR-574225, Moodbidri, D.K., Karnataka Ph: 08258-262725; Mob:722262724,7026262725,mail:principalaiet08@gmail.com

Department of Agriculture Engineering

Assignment Number:	1,2,3	Max Marks:	10 Marks
Subject Name:	Agricultural Process Engineering	Subject Code:	BAG403
Faculty Incharge:	Dr. K. Raju Yadav	Date of Announcement:	10/06/2024 05/07/2024 15/07/2024
Sem /Branch/Section:	IV th Agriculture Engineering	Date of Submission:	18/06/2024 12/07/2024 22/07/2024
Max Mark	10	Module Number	1,2,3,4&5

Q. No	Questions	Marks	COs mapped
1	Describe about physical and physiological properties of fruits and vegetable grains.	10	CO1
2	Explain Design consideration of an Air Screen Grain Cleaner	10	CO2 & CO3
3	Write about Energy Requirements	10	CO4 & CO5

Reference text books

- 1. Unit Operations of Agricultural Processing, Sahay KM and Singh KK 1994, Vikas Publishing House Pvt. Ltd., New Delhi
- 2. Post-Harvest Technology of Cereals, Pulses and oil seeds, Chakraverty A 1988. Oxford and IBH Publishing Co. Ltd., Calcutta.
- 3. Physical properties of plant & animal materials, N Mohsenin, 1980, Gordon & breach science publications

Dept. of Agricultural Engineering Alva's Institute of Engg. & Technology

Mijar, Moodubidire - 574225

CECS SCHEME

USN ALZZAGOL

BAG403

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 **Agricultural Process Engineering**

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes,

n.	ties of biomaterials is	in detail. io-materials? E	xplain with neat			2 C
	ation behavior of b	io-materials? E	xplain with neat	10		STATE OF THE PARTY
				1		C
	OR			1		1
briefly about i	importance of physi	cal characteris	tics of different	10	1.2	CO
an equation for k	Celvin model.	The state of the s	-	10	L2	CO
A	Module - 2				-	-
riefly about frict	ional properties.			10	L2	CO
briefly about the	ermal properties of fo	od grain.		COLUMN TO SERVER	1.2	CO
***	OR		-			
s briefly about action amic properties.	erodynamics properti	es and mention	importance of	10	L2	CO.
	ectrical properties.	1 Man	49,	5	L2	CO
n applications of nents.	engineering propert	ies in handling	of processing	5	1.2	CO
	Module -3	7				
n types of air sc eat sketch.	reen (grain) cleaner	and explain an	y one in detail	10	L2	CO
s in brief about	working principle o	f cyclone separ	rator with neat	10	L2	СО
Page	OR OR					
in brief about vo	civet roll separator wi	ith neat sketch.		10	1.2	CO
e working princi	ple of pneumatic sepa	arator.	2500	5	L2	CO
o mara collected	for analysis of clear sented in the following.	n seed fraction ng table. Calcul	ate the cleaning			
npie Feed	Cleaning grain outlet (g)	Blower outlet (g)	Oversize outlet (g)	-	nders utlet (
1	246.5	1.25	4.5	-	2,0	
cd seed 231.25	AND RESIDENCE OF THE PROPERTY OF THE PERSON	1	2155		248.0	
v	30)) The same of the	245.5	246.75 245.5) 248.75 18.75 3.5 248.75 245.5 248.0

0.7	1	Module = 4					
Q.7	A.	Explain briefly about working of hammer mill with neat sketch		10	1.2	C)5
	b.	Write a short note on working of ball mill.		06	1.2	CC)5
	c.	What would be the critical speed and operating speed of rotation for w grinding in viscous suspension by a ball mill of 1600mm diameter charge with 75mm balls?	et (04	LI	co	13
		OR			and the second		
Q.8	A.	Define crushing efficiency. Explain Rittinger's and Kick's law.	10	1 0	.2	COS	
	b.	In a wheat milling experiment it was found that to grind 4.33mm sized grains to 1S sieve 35 [0.351mm opening], the power requirement was 8kW. Calculate the power requirement for milling of wheat by the same mill to IS sieve 15 [0.157mm opening] using: i) Rittinger's law ii) Kick's law. Feed rate of milling is 200Kg/hr.		L	4 (05	
	3	Module – 5					,
Q.9	a.	What is paddy parboiling? Explain modern methods of parboiling.	10	L2	In the Property lies	05	1
	b.	Define rate of filtration? Explain in brief about constant rate filtration and constant pressure filtration.	10	L3	C	05	
	1	OR					
Q.10	a.	Discuss in detail about wet pulse milling method.	10	L2	CC	MALESTANA	
	b.	Explain working principle of centrifugal dehusker with neat sketch.	10	1.2	CC)5	

H.O.D.

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY (Unit of Alva's Education Foundation (R), Moodbidri)

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi & Approved by AICTE, New Delhi. Recognized by Government of Karnataka.

A+, Accredited by NAAC & NBA (ECE & CSE) Shobbayana Campus, MIJAR-574225, Moodbidri, D.K., Karnataka Ph: 08258-262725; Mob: 722262724,7026262725,mail:principulaiet08@gmail.com

4th Semester CTE-Consolidated Report (2022 Scheme) 2023-24 EVEN Semester Department of Agriculture Engineering

					ed CIE- Marks		ne e					
	SEMESTER:	IV		T		ance Percentag	e as on:			V2024		
	T	Ī			,	Mini	mum Attendance		- 85%			
	1		BAC	G401	BAG	G402		G403)		(405A)		K407)
Roll No	USN	Name	MARKS	ATT %	MARKS	ATT %	MARKS	ATT %	MARKS	ATT %	MARKS	ATT %
1	4AL22AG001	AKSHATA GANGADHAR SUNKAD	27	92.0	44	88.64	49	91.8	49	90.4	43	100.0 93.0
2	4AL22AG002	DEEPAK J	35	95.0	42	93.18	48	89.7	48	92.8	40	93.0 87.0
3	4AL22AG003	DEEPIKA Y	31	90.0	37	90.91	44	89.7	47	92.8	39	93.0
4	4AL22AG004	ESHA S	50	88.0	50	93.18	50	97.9	50	100.0	50	93.0 87.0
5	4AL22AG005	GURUPRASAD N	34	86.0	44	95.45	50	91.8	48	95.2	39	
6	4AL22AG006	KASTURI C	39	97.0	44	86.36	50	93.8	50	95.2	42	87.0
7	4AL22AG007	M B KRUPA	39	93.0	42	97.73	49	97.9	50	97.6	43	93.0
8	4AL22AG008	N HARIYANTH KUMAR	39	97.0	46	86.36	49	91.8	50	92.8	40	90.4
9	4AL22AG009	NAVEEN NAYAK	39	97.0	48	100.00	50	100.0	49	100.0	40	85.7
10	4AL22AG010	NIHAR S ACHARYA	49	92.0	50	95.45	50	95.9	50	97.6	50	85.7
11	4AL22AG011	NIKITHA	33	85.0	40	97.73	49	95.9	49	90.4	39	100.0
12		NITHIN M SHETTY	24	90.0	32	86.36	39	89.7	32	92.8	33	90.4
13	4AL22AG013	PRAJNA SHREE JAIN	50	95.0	50	97.73	50	100.0	50	95.2	50	85.0
14		PRANJAL P POOJARY	28	88.0	33	90.91	45	85.7	41	90.4	35	95.2
15	4AL22AG015	PRAPTHI N S	39	92.0	50	90.91	50	93.8	50	90.4	50	90.4
16	4AL22AG016		43	88.0	45	95.45	45	93.8	47	97.6	38	100.0
17		RAJITH S SHETTY	49	95.0	45	100.00	49	100.0	50	100.0	40	100.0
18		SAMANSH Y SUVARNA	44	95.0	44	97.73	49	89.7	47	95.2	40	100.0
19	4AL22AG020		36	92.0	40	86.36	48	89.7	50	95.2	40	85.7
20		THEJAS A V	50	93.0	50	93.18	50	100.0	50	100.0	50	100.0
21		THRUPTHI S RAI	42	95.0	50	93.18	50	100.0	50	100.0	42	95.2
22		VEERESH S METI	24	86.0	34	86.36	39	85.7	38	88.0	37	90.4
23		VISHWANATH D CHAVADANNAVAR	27	88.0	37	88.64	46	89.7	45	95.2	40	95.2
	4ADZZAG024	V 2022 11120 11222			TA ANA	ALYSIS R	FPORT					
			2	.3	2			3	7	23	2	3
O OF STUI	DENTS APPEA	RED		0))		0		0
O OF STU	DENTS ABSEN	г			2			3		23		3
O OF STUI	ENTS PASSED			3)		0)
O OF STUI	ENTS FAILED			<u> </u>))		00		00
ASS PERCE	NTAGE			00	10					0	and the same of th)
		EN 0 TO 18 MARKS)))		23		3
	ENTS BETWE		2	3	2		2	3				,
O OI SICE	ENTE DEST		0	_	\ \ <u>\</u>		((e	w Yue	(V	Ju/	ر ا	
			*	ИB	S		KI KI		l K	RY	4	5 /
taff Signat	ure with Date		VA	ив]	•	Deed				6	SW
			. 1	_		`	J				· See	- XI
	DRDINATOR		And L	2.0		DE.	AN ACADEMI	CS			CPHIN	COAL
CLASS CO	OKDINATOR			J.D.							0.	PINCIPA

Dept. of Agricultural Engineering Alva's Institute of Engg. & Technology Mijar, Moodubidire - 574225

PRINCIPAL

fiva's institute of Engg. & Technology, Mijus. MOGDBIDRI - 574 225, D.K.

ALVA'S INSTITUTE OF ENGINEERING & TECHNOLOGY (U.S. of Alva's Education Foundation (R), Moodidri)

Affiliated to Visvesvaraya Technological University, Belagavi & Approved by AlCTE, New Delhi. Recognized by Government of Karnataka.

A+, Accredited by NACC & NBA (ECE & CSE)

Shobhavana Campus, MIJAR-574225, Moodbidri, D.K., Karnataka Ph. 08258-262725; Mob:722262724,7026262725,mail:principalaiet08@gmail.com

DEPARTMENT OF AGRICULTURE ENGINEERING

COs, PEOs, PSOs and COs-POs/PSOs mapping Matrix with justification

			a justification
		SEMESTER-IV	
Sub Code: 1	BAG403	Sub Name: Agricultural Process Engineering	
	ear: 2023-24	Course Teacher	Dr. K. Raju Yadav
COURSE	OUTCOMES: After studying	ng this course, students will be able to:	•
BAG403.1	Be proficient in the scope of the	e process engineering and the use of processing mac	hinery
BAG403.2	Understand the physical proper	ties, rheological properties and frictional properties	of agricultural materials
BAG403.3	Summarizing the thermal prope	erties, electrical properties and the terms related to the	ne machine design aspects
BAG403.4	Some of the basic concepts rela	ated to cleaning, drying and size reduction equipmen	t'e
BAG403.5	To acquaint the students with the	he milling of rice, parboiling technologies and milling	og of nulses and oil seeds
BAG403.6	Understand the material handling	ng and transportation equipment's	ig of pulses and on seeds

CO-PO /CO-PSO MAPPING MATRIX:

CO NUMBERS	PO1	PO2	РО3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
BAG403.1	2						2									
BAG403.2					2	2		2		2					1	2
BAG403.3		2	2	2	2	2	2	2	2		2			2	1	2
BAG403.4	2	2	2	2	2	2	2	2				2	1	1		1
BAG403.5				2						2	2		1	1		
BAG403.6	2	2											1		1	1
AVERAGE	2	2	2	2	2	2	2	2	2	2	2	2	1	1.3	1	1.5

Affiliated to Visvesvaraya Technological University, Belagavi & Approved by AICTE, New Delhi. Recognized by Government of

Karnataka.

A+, Accredited by NACC & NBA (ECE & CSE)

Shobhavana Campus, MIJAR-574225, Moodbidri, D.K., Karnataka Ph. 08258-262725; Mob:722262724,7026262725,mail:principalaiet08@gmail.com

DEPARTMENT OF AGRICULTURE ENGINEERING

CO.PO /CO DEO MADDING TO ---

CO NUMBERS	PO/PSO NUMBERS	JUSTIFICATION
3AG403.1	PO1	To Apply the knowledge of mathematics and engineering scope of the process engineering
	PO7	To understand the use of processing machinery
	PO5	To learn physical properties
BAG403.2	PO6	Understand the rheological properties
	PO8	frictional properties of agricultural materials
	PO9	Advanced instrumentation should should need to measure the properties
	PO10	Storage and handling of paddy and food grains
	POS3	To learn applications instrumentation
	POS4	Design of advanced instrumentation
	PO2	To Apply the knowledge of mathematics and engineering fundamentals of electrical properties
BAG403.3	PO3	Identify the existing problems in machines
	PO4	study about frictional properties
	PO5	Learn about design of machinery
	PO6	Applications of electrical properties machinery
	PO7	Advancement of frictional properties machinery
	PO8	Desig of processing agricultural machinery
	PO9	Technology of advanced agricultural processing machinery
	PO11	Application of all aspects of APE machinery
	PSO2	Develop an advanced machinery
	PSO3	Skills needed for application of agricultural processing machinery
	PSO4	Adopt latest technology to advanced tractors
3AG403.4	PO1	To Apply the knowledge of mathematics and engineering cleaning
	PO2	Study of Drying techniques
	PO3	Size reduction process
	PO4	Latest technology about cleaning machinery
	PO5	Application of drying machinery
	PO6	Gyratory & jaw crusher technology