B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VII				
DESIGN LAB				
Course Code	18MEL77	CIE Marks	40	
Teaching Hours /Week (L:T:P)	0:2:2	SEE Marks	60	
Credits	02	Exam Hours	03	

Course Learning Objectives:

- To understand the concepts of natural frequency, logarithmic decrement, damping and damping ratio.
- To understand the techniques of balancing of rotating masses.
- To verify the concept of the critical speed of a rotating shaft.
- To illustrate the concept of stress concentration using Photo elasticity.
- To appreciate the equilibrium speed, sensitiveness, power and effort of a Governor.
- To illustrate the principles of pressure development in an oil film of a hydrodynamic journal bearing.

SI.	Experiments			
No.				
PART - A				
1	Determination of natural frequency, logarithmic decrement, damping ratio and damping coefficient in a			
	single degree of freedom vibrating systems (longitudinal and torsional).			
2	Balancing of rotating masses			
3	Determination of critical speed of a rotating shaft			
4	Determination of equilibrium speed, sensitiveness, power and effort of Porter/Proell /Hartnel			
	Governor.			
PART - B				
5	Determination of Fringe constant of Photo-elastic material using.			
	a) Circular disc subjected to diametral compression.			
	b) Pure bending specimen (four-point bending.			
6	Determination of stress concentration using Photo-elasticity for simple components like plate with a			
	hole under tension or bending, circular disk with circular hole under compression, 2D Crane hook			
7	Determination of Pressure distribution in Journal bearing			
8	Determination of Principal Stresses and strains in a member subjected to combined loading using Strain			
9	Determination of stresses in Curved beam using strain gauge.			

Course Outcomes: At the end of the course, the student will be able to:

CO1: Compute the natural frequency of the free and forced vibration of single degree freedom systems, critical

speed of shafts.

- CO2: Carry out balancing of rotating masses.
- CO3: Analyse the governor characteristics.
- CO4: Determine stresses in disk, beams, plates and hook using photo elastic bench.
- CO5: Determination of Pressure distribution in Journal bearing
- CO6: Analyse the stress and strains using strain gauges in compression and bending test and stress distribution

in curved beams.

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.
- 2. Students can nick one experiment from the questions let prepared by the examiners