Scheme of Examination:

One question from Part A: 40 marks
One question from Part B: 40 Marks

Viva voce: 20 Marks Total: 100 Marks

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VIII

ENERGY ENGINEERING					
Course Code	18ME81	CIE Marks	40		
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60		
Credits	03	Exam Hours	03		

Course Learning Objectives:

- Understand energy scenario, energy sources and their utilization
- Learn about energy conversion methods
- Study the principles of renewable energy conversion systems.

Module-1

STEAM GENERATORS Coal and ash handling, Generation of steam using forced circulation, high and supercritical pressures, LaMount, Benson, Velox, Loeffer, Schmidt steam generators, Cooling towers and Ponds, Accessories such as Superheaters, De-superheater, Economizers, Air preheaters.

Module-2

Solar Energy: Introduction, Solar radiation at the earth's surface, Solar radiation measurements, Flat plate collectors, Focussing collectors, Solar pond, Solar electric power generation-Solar photovoltaics.

Biomass Energy: Photosynthesis, photosynthetic oxygen production, energy plantation. Bio Chemical Route: Biogas production from organic wastes by anaerobic fermentation, Bio gas plants-KVIC, Janta, Deenbhandu models, factors affecting bio gas generation. Thermal gasification of biomass, updraft and downdraft

Module-3

Geothermal Energy: Forms of geothermal energy, Dry steam, wet steam, hot dry rock and magmatic chamber systems.

Tidal Energy: Tidal power, Site selection, Single basin and double basin systems, Advantages and disadvantages of tidal energy.

Wind Energy: Wind energy-Advantages and limitations, wind velocity and wind power, Basic components of wind energy conversion systems, horizontal and vertical axis wind mills, coefficient of performance of a wind mill rotor, Applications of wind energy.

Module-4

Hydroelectric plants: Advantages & disadvantages of water power, Hydrographs and flow duration curvesnumericals, Storage and pondage, General layout of hydel power plants- components such as Penstock, surge tanks, spill way and draft tube and their applications, pumped storage plants, Detailed classification of hydroelectric plants, water hammer.

Ocean Thermal Energy: Ocean thermal energy conversion, Principle and working of Rankine cycle, Problems associated with OTEC.

Module-5

NUCLEAR ENERGY Principles of release of nuclear energy-Fusion and fission reactions. Nuclear fuels used in the reactors, Chain reaction, Moderation, breeding, Multiplication and thermal utilization factors. General components of a nuclear reactor and materials, Brief description-Pressurized water reactor, Boiling water reactor, Sodium graphite reactor, Fast Breeder reactor, Homogeneous graphite reactor and gas cooled reactor, Radiation hazards, Shielding, Nuclear waste, Radioactive waste disposal.

Course Outcomes: At the end of the course the student will be able to:

CO1: Understand the construction and working of steam generators and their accessories.

CO2: Identify renewable energy sources and their utilization.

CO3: Understand principles of energy conversion from alternate sources including wind, geothermal, ocean, biomass, nuclear, hydel and tidal.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ook/s			
1	Power Plant Engineering	P. K. Nag	Tata McGraw Hill Education Private	Third Edition, 2012.
			Limited, New Delhi	2012.
2	Power Plant Engineering	Arora and Domkundwar	Dhanpat Rai & Co. (P) Ltd.	Sixth Edition, 2012.
3	Non-conventional Sources of Energy	G.D.Rai	Khanna Publishers, New Delhi	Fifth Edition, 2015.
4	Non-conventional energy resources	B H Khan	McGraw Hill Education	3rd Edition
Refere	nce Books			
1	Power Plant Engineering	R. K. Rajput	Laxmi publication New Delhi	
2	Principles of Energy conversion	A. W. Culp Jr	McGraw Hill	1996
3	Power Plant Technology	M.M. EL-Wakil	McGraw Hill International	1994
4	Solar Energy: principles of Thermal Collection and Storage	S.P. Sukhatme	Tata McGraw-Hill	1984