B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VII

Course Code	ADDITIVE MANUFACT		Abolt a
Teaching Hours / Week (L:T:P)	18ME741	CIE Marks	40
credits	3.0.0	SEE Marks	60
Course Learning Objects	03	Exam Hours	03

arning Objectives:

- To know the principle methods, areas of usage, possibilities and limitations of the Additive Manufacturing technologies.
- To be familiar with the characteristics of the different materials those are used in Additive
- To know the principles of polymerization and powder metallurgy process, extrusion-based system printing processes, sheet lamination processes, beam deposition processes, direct write technologies and Direct Digital Manufacturing.
- To get exposed to process selection, software issues and post processing.

Module-1

Introduction and basic principles: Need for Additive Manufacturing, Generic AM process, stereoli tho graphy or 3dprinting, rapid proto typing ,the benefits of AM, distinction between AM and CNC machining, other related technologies- reverse engineering technology.

Development of Additive Manufacturing Technology: Introduction, computers, computer-aidedde sign technology ,other associated technologies, the use of layers, classification of AM processes, metals ystems, hybrid systems, milestones in AM development.

Additive Manufacturing Process chain: Introduction, the eight steps in additive manufacture, variations from one AM machine to another ,metal systems, maintenance of equipment, materials handling issues, design for AM, and application areas.

Module-2

Photo polymerization processes: Stereolitho graphy (SL), Materials, SL resin curing process, Micro-stereoli thography, Process Benefits and Drawbacks, Applications of Photo polymerization Processes.

Powder bedfusion processes: Introduction, Selective laser Sintering (SLS), Materials, Powder fusion mechanism, SLS Metal and ceramic part creation, Electron Beam melting (EBM), Process Benefits and Drawbacks, Applications of Powder Bed Fusion Processes.

Extrusion-based systems: Fused Deposition Modelling (FDM), Principles, Materials, Plotting and path control, Bio-Extrusion, Process Benefits and Drawbacks, Applications of Extrusion-Based Processes.

Module-3

Printing Processes: evolution of printing as an additive manufacturing process, research achievements in printing deposition, technical challenges of printing, printing process modeling, material modification methods, three-dimensional printing, advantages of binder printing

Sheet Lamination Processes: Materials, Laminated Object Manufacturing (LOM), Ultrasonic Consolidation (UC), Gluing, Thermal bonding, LOM and UC applications.

Beam Deposition Processes: introduction, general beam deposition process, description material delivery, BD systems, process parameters, typical materials and microstructure, processing-structure-properties relationships, BD benefits and drawbacks.

Direct Write Technologies: Background ,ink -basedDW,laser transfer, DW thermals pray,DW beam deposition, DW liquid-phase directde position.

Module-4

Dept. Of Mechanical Engineering Alva's Institute of Engg. 8 Terr . 2000 Mijar, MOODBIDRI - 574

Guidelines for Process Selection: Introduction, selection methods for apart, challenges of selection, example

system for preliminary selection, production planning and control.

Software issues for Additive Manufacturing: Introduction, preparation of cad models – the STL file, problems

Post- Processing: Support material removal, surface texture improvements, preparation for use as a pattern, property enhancements using non-thermal techniques and thermal techniques.

The use of multiple materials in additive manufacturing: Introduction, multiple material approaches, discrete multiple material processes, porous multiple material processes, blended multiple material processes, commercial applications using multiple materials, future directions.

AM Applications: Functional models, Pattern for investment and vacuum casting, Medical models, art models, Engineering analysis models, Rapid tooling, new materials development, Bi-metallic parts, Remanufacturing. Application: Examples for Aerospace, defense, automobile, Bio-medical and general engineering industries.

Direct digital manufacturing: Align Technology, siemens and phonak, DDM drivers, manufacturing vs. prototyping, life-cycle costing, future of direct digital manufacturing.

Course Outcomes: At the end of the course the student will be able to:

- CO1: Demonstrate the knowledge of the broad range of AM processes, devices, capabilities and materials that are available.
- CO2: Demonstrate the knowledge of the broad range of AM processes, devices, capabilities and materials that are available.
- CO3: Understand the various software tools, processes and techniques that enable advanced/additive manufacturing.
- CO4: Apply the concepts of additive manufacturing to design and create components that satisfy product development/prototyping requirements, using advanced/additive manufacturing devices and
- CO6: Understand characterization techniques in additive manufacturing.
- CO7: Understand the latest trends and business opportunities in additive manufacturing.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and	
Textboo	k/s			Year	
1	Additive Manufacturing Technologies Rapid Prototyping to Direct Digital Manufacturing	I. Gibson I D. W. Rosen I B. Stucker	Springer New York Heidelberg Dordrecht, London	ISBN: 978-1- 4419-1119-3 e-ISBN: 978- 1-4419- 1120-9 DOI 10.1007/978 -1-4419-	
Reference Books					
1	"Rapid Prototyping: Principles & Applications	Chua Chee Kai, Leong Kah Fai	World Scientific	2003	
2	Rapid Prototyping: Theory & Practice	Ali K. Kamrani,	Springer		
	1-2-3			2006	

Marine and the second second

		EmandAbouel Nasr,		
3	Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling"	D.T. Pham, S.S. Dimov	Springer	2001
4	Rapid Prototyping: Principles and Applications in Manufacturing	RafiqNooran	John Wiley & Sons	2006
5	Additive Manufacturing Technology	Hari Prasad, A.V.Suresh	Cengage	2019
6	Understanding additive manufacturing: rapid prototyping, rapid tooling, rapid manufacturing	Andreas Gebhardt	Hanser Publishers	2022