Choice Based Co	B. E. MECHANICAL ENC edit System (CBCS) and Ou SEMESTER - V	tcome Based Education (OBE)		
HEAT TRANSFER LAB				
Course Code	18MEL67	CIE Marks	40	
Teaching Hours/Week (L:T:P)	0:2:2	SEE Marks	60	
Credits	02	Exam Hours	03	

Course Learning Objectives:

- The primary objective of this course is to provide the fundamental knowledge necessary to understand the behavior of thermal systems.
- This course provides a detailed experimental analysis, including the application and heat transfer through solids, fluids, and vacuum.
- Convection, conduction, and radiation heat transfer in one and two dimensional steady and unsteady systems are examined

	systems are examined.		
SI.	Experiments		
No.			
PART A			
1	Determination of Thermal Conductivity of a Metal Rod.		
2	Determination of Overall Heat Transfer Coefficient of a Composite wall.		
3	Determination of Effectiveness on a Metallic fin.		
4	Determination of Heat Transfer Coefficient in free Convection		
5	Determination of Heat Transfer Coefficient in a Forced Convention		
6	Determination of Emissivity of a Surface.		
PART B			
7	Determination of Stefan Boltzmann Constant.		
8	Determination of LMDT and Effectiveness in a Parallel Flow and Counter Flow Heat Exchangers.		
9	Experiments on Boiling of Liquid and Condensation of Vapour.		
10	Performance Test on a Vapour Compression Refrigeration.		
11	Performance Test on a Vapour Compression Air – Conditioner.		
12	Experiment on Transient Conduction Heat Transfer.		
PART C (OPTIONAL)			
13	Analysis of steady and transient heat conduction, temperature distribution of plane wall and cylinder		
	using Numerical approach (ANSYS/CFD package).		
14	Determination of temperature distribution along a rectangular and circular fin subjected to heat loss		
	through convection using Numerical approach (ANSYS/CFD package).		

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Determine the thermal conductivity of a metal rod and overall heat transfer coefficient of composite slahs
- CO2: Determine convective heat transfer coefficient for free and forced convection and correlate with theoretical values.
- CO3: Evaluate temperature distribution characteristics of steady and transient heat conduction through solid cylinder experimentally.
- CO4: Determine surface emissivity of a test plate and Stefan Boltzmann constant
- CO5: Estimate performance of a refrigerator and effectiveness of a fin and Double pipe heat exchanger

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.
- 3. Students can pick one experiment from the questions lot prepared by the examiners.
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made

Scheme of Examination:

One Question from Part A - 40 Marks

One Question from Part B - 40 Marks

Viva-Voce - 20 Marks

Dept. Of Machanical Engineering Alva's Institute of Engg. & Technology Mijar, MOODBIDRI - 574 225