Course Code OPERATIONS	RESEARCH	
Teaching Hours/Week (L:T:P) 3:0:2	CIE Marks	40
Course objectives: 9.0/2	SEE Marks	60
• Understand	Exam Hours	03

- Understand the mathematical tools that are needed to solve optimisation problems
- Solve linear programming problems using appropriate techniques to take informed Decision To understand and practice allocation problems, Assignments problems, Transportation problems and Module -1 Introduction

Definition, scope of Operations Research, characteristics, advantages and limitations. Quantitative approach to decision making models (Theory Only) Module -2 Linear programming

Structure of linear program model, Assumption, Advantages, Limitations, General mathematical model, Guidelines for formulation of linear programming model, Formulation of problems, graphical method.

Module -3 Transportation problem

General structure of transportation problem, methods of finding initial basic feasible solution (NWCM, LCM & VAM). Degenerate Control of the VAM), Degeneracy, Optimality Test using Stepping Stone and MODI Methods (theory only). Assignment problems - Introduction, General structure. Problems on minimization & maximization. Module -4 Decision theory

Decision under uncertainty- Maxmin & Minmax, Decision under Risk- Expected Value, Simple decision tree problems. (Only theory). Job Sequencing- N Jobs-two machines and N Jobs-three machines, 2 jobs-M machines Module -5 Theory of games

Formulation of game models, Two person Zero sum games & their solution, 2 x N and M x 2 games, pure strategy games with saddle point, Mixed strategies (Graphical and algebraic methods), Limitations of game

Simulation: process of simulation, types of simulation, steps in simulation process, Monte Carlo simulation, Simple problems on Simulation applications in Inventory, Queuing, finance problems, Advantages &

Module-6 Project management

Structure of projects, phases of project management-planning, scheduling, controlling phase, work breakdown structure, project control charts, network planning, PERT & CPM, Network components & precedence relationships, critical path analysis, probability in PERT analysis, Theory of crashing (Theory Only), Theory of Course outcomes:

- 1. Get an insight into the fundamentals of Operations Research and its definition, characteristics and
- Use appropriate quantitative techniques to get feasible and optimal solutions
- Understand the usage of game theory, Queuing Theory and Simulation for Solving Business Problems
- Understand and apply the network diagram for project completion

Practical component:

- Learn and use TORA Software for analysis of all the ORTechniques and Real life Problems.
- Student should demonstrate the application of the techniques covered in this course.

	PO						
co	POI	PO2	PO3	PO4	PO5		
COI	X.						
CO2	X		X	X	X		
CO3	X		X		X		
CO4	X		X		X		

Question paper pattern:
The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 60.

The question paper will have 8 full questions carrying equal marks.

Each full question is for 20 marks.

Each full question will have sub question covering all the topics under a Module. The students will have to answer five full questions; selecting four full question from question number one to seven and question with the students will have to answer five full questions; selecting four full question from question number one to seven and question number eight is compulsory.

40 percent theory and 60 percent problems in the SEE.

Text	book/ Textbooks			Edition and year
SI No	Title of the book	Name of the Author/s	Publisher Name	2012
1	Operation Research: An Introduction	H.A. Taha	Pearson Publication	
2	Operation Research	J K Sharma	McMillan Publications	2014
Refer	ence Books		r .	Table
1	Quantitative Techniques in management	N D Vohra	McGraw Hill	2015
2	Operation Research	J K Sharma	McMillan Publications	2016

Page 32 of 123

Dept. of Business Administration Alva's Institute of Engg. & Technology MIJAR - 574 225