MICROWAVE and ANTENNAS | G : 18EC63 | CIE Marks: 40 | |--|----------------| | Course Code | SEE marks: 60 | | Lecture Hours/Week : 03 + 2 (Tutorial) Total Number of Lecture Hours : 50 (10 Hrs / Module) | Exam Hours: 03 | | Total Number of Lecture Hours: 50 (10 Hz) | | Course Learning Objectives: This course will enable students to: - Describe the microwave properties and its transmission media - Describe microwave devices for several applications - Understand the basics of antenna theory - Select antennas for specific applications #### Module 1 Microwave Tubes: Introduction, Reflex Klystron Oscillator, Mechanism of Oscillations, Modes of Oscillations, Mode Curve (Qualitative Analysis only). (Text 1: 9.1, 9.2.1) Microwave Transmission Lines: Microwave Frequencies, Microwave devices, Microwave Systems, Transmission Line equations and solutions, Reflection Coefficient and Transmission Coefficient, Standing Wave and Standing Wave Ratio, Smith Chart, Single Stub matching. (Text 2: 0.1, 0.2, 0.3, 3.1, 3.2, 3.3, 3.5, 3.6 Except Double stub matching) L1,L2 #### Module 2 Microwave Network theory: Introduction, Symmetrical Z and Y-Parameters for reciprocal Networks, S matrix representation of Multi-Port Networks. (Text1: 6.1, 6.2, 6.3) Microwave Passive Devices: Coaxial Connectors and Adapters, Attenuators, Phase Shifters, Waveguide Tees, Magic tees. (Text 1: 6.4.2,6.4.14, 6.4.15, 6.4.16) L1,L2 #### Module 3 Strip Lines: Introduction, Micro Strip lines, Parallel Strip lines, Coplanar Strip lines, Shielded Strip Lines. (Text 2: 11.1, 11.2, 11.3, 11.4) Antenna Basics: Introduction, Basic Antenna Parameters, Patterns, Beam Area, Radiation Intensity, Beam Efficiency, Directivity and Gain, Antenna Apertures, Effective Height, Radio Communication Link, Antenna Field Zones. (Text 3: 2.1 L1,L2,L3 -2.7, 2.9 - 2.11, 2.13 #### Module 4 Point Sources and Arrays: Introduction, Point Sources, Power Patterns, Power Theorem, Radiation Intensity, Arrays of two isotropic point sources, Linear Arrays of n Isotropic Point Sources of equal Amplitude and Spacing. (Text 3: 5.1 – 5.6, 5.9, 5.13) Electric Dipoles: Introduction, Short Electric Dipole, Fields of a Short Dipole, Radiation Resistance of a Short Electric Dipole, Thin Linear Antenna (Field Analyses) (Text 3: 6.1 - 6.5) L1,L2,L3,L4 # Module 5 Loop and Horn Antenna: Introduction, Small loop, The Loop Antenna General Case, The Loop Antenna as a special case, Radiation resistance of loops, Directivity of Circular Loop Antennas with uniform current, Horn antennas Rectangular Horn Antennas. (Text 3: 7.1, 7.2, 7.4, 7.6, 7.7, 7.8, 7.19, 7.20) Antenna Types: The Helix geometry, Helix modes, Practical Design considerations for the mono-filar axial mode Helical Antenna, Yagi-Uda array, Parabolic reflector (Text 3: 8.3, 8.4, 8.5, 8.8, 9.5) L1,L2,L3 Course outcomes: At the end of the course students will be able to: - 1. Describe the use and advantages of microwave transmission - Analyze various parameters related to microwave transmission lines and waveguides - 3. Identify microwave devices for several applications - Analyze various antenna parameters necessary for building a RF system - Recommend various antenna configurations according to the applications. # Question paper pattern: - Examination will be conducted for 100 marks with question paper containing 10 full questions, each of 20 marks. - Each full question can have a maximum of 4 sub questions. - There will be 2 full questions from each module covering all the topics of the module. - Students will have to answer 5 full questions, selecting one full question from each module. - The total marks will be proportionally reduced to 60 marks as SEE marks is 60. ## Text Books: - 1. Microwave Engineering Annapurna Das, Sisir K Das, TMH, Publication, 2nd, 2010. - 2. Microwave Devices and circuits- Samuel Y Liao, Pearson Education - 3. Antennas and Wave Propagation- John D. Krauss, Ronald J Marhefka, Ahmad S Khan, 4th Edition, McGraw Hill Education, 2013 ### Reference Books: - 1. **Microwave Engineering** David M Pozar, John Wiley India Pvt. Ltd., 3rd Edn, 2008. - 2. **Microwave Engineering** Sushrut Das, Oxford Higher Education, 2nd Edn, 2015 - 3. Antennas and Wave Propagation Harish and Sachidananda: Oxford University Press, 2007 H. O. D. D.V.T Dept. Of Electronics & Communication Alva' Institute of Units, & Technology Mijar, MOODBIDRI - 974 228