IoT & WIRELESS SENSOR NETWORKS

Course Code	: 18EC741	CIE Marks	:40
Lecture Hours/Week	:3	SEE Marks	:60
Total Number of Lecture Hours: 40 (08 Hrs / Module)		Exam Hours	:03
CREDITS-03			

Course Learning Objectives: This course will enable students to:

- Describe the OSI Model for IoT/M2M Systems.
- Understand the architecture and design principles for device supporting IoT.
- Develop competence in programming for IoT Applications.
- Identify the uplink and downlink communication protocols which best suits the specific application of IoT / WSNs.

Module-1

Overview of Internet of Things: IoT Conceptual Framework, IoT Architectural View, Technology Behind IoT, Sources of IoT,M2M communication, Examples of IoT. Modified OSI Model for the IoT/M2M Systems, data enrichment, data consolidation and device management at IoT/M2M Gateway, web communication protocols used by connected IoT/M2M devices, Message communication protocols (CoAP-SMS, CoAP-MQ, MQTT,XMPP) for IoT/M2M devices. – Refer Chapter 1, 2 and 3 of Text 1.

L1, L2

Module-2

Architecture and Design Principles for IoT: Internet connectivity, Internet-based communication,IPv4, IPv6,6LoWPAN protocol, IP Addressing in the IoT, Application layer protocols: HTTP, HTTPS,FTP,TELNET and ports.

Data Collection, Storage and Computing using a Cloud Platform: Introduction, Cloud computing paradigm for data collection, storage and computing, Cloud service models, IoT Cloud- based data collection, storage and computing services using Nimbits. - Refer Chapter 4 and 6 of Text 1.

L1, L2

Module-3

Prototyping and Designing Software for IoT Applications: Introduction, Prototyping Embedded device software, Programming Embedded Device Arduino Platform using IDE, Reading data from sensors and devices, Devices, Gateways, Internet and Web/Cloud services software development.

Programming MQTT clients and MQTT server. Introduction to IoT privacy

and security. Vulnerabilities, security requirements and threat analysis, IoT Security Tomography and layered attacker model. - Refer Chapter 9 and 10 of Text 1.

L1, L2, L3

Module-4

Overview of Wireless Sensor Networks:

Challenges for Wireless Sensor Networks, Enabling Technologies for Wireless Sensor Networks.

Architectures: Single-Node Architecture - Hardware Components, Energy Consumption of Sensor Nodes, Operating Systems and Execution Environments, Network Architecture-Sensor Network Scenarios, Optimization Goals and Figures of Merit, Design principles for WSNs, Service interfaces of WSNs Gateway Concepts. - Refer Chapter 1, 2, 3 of Text 2.

L1, L2, L3

Module-5

Communication Protocols:

Physical Layer and Transceiver Design Considerations, MAC Protocols for Wireless Sensor Networks, Low Duty Cycle Protocols And Wakeup Concepts - S-MAC , The Mediation Device Protocol, Wakeup Radio Concepts, Contention based protocols(CSMA,PAMAS), Schedule based protocols (LEACH, SMACS, TRAMA) Address and Name Management in WSNs, Assignment of MAC Addresses, Routing Protocols-Energy-Efficient Routing, Geographic Routing, Hierarchical networks by clustering.

- Refer Chapter 4, 5, 7 and 11 of Text 2.

L1, L2, L3

Course Outcomes: At the end of the course, students will be able to:

- 1. Understand choice and application of IoT & M2M communication protocols.
- 2. Describe Cloud computing and design principles of IoT.
- 3. Relate to MQTT clients, MQTT server and its programming.
- 4. Describe the architectures and its communication protocols of WSNs.
- 5. Identify the uplink and downlink communication protocols associated with specific application of IOT / WSNs

Question paper pattern:

- Examination will be conducted for 100 marks with question paper containing 10 full questions, each of 20 marks.
- Each full question can have a maximum of 4sub questions.
- There will be 2 full questions from each module covering all the topics of the module.

- Students will have to answer 5full questions, selecting one full question from each module.
- The total marks will be proportionally reduced to 60 marks as SEE marks is 60.

Text Books:

- 1. Raj Kamal, "Internet of Things-Architecture and design principles", McGraw Hill Education.
- 2. Holger Karl & Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2005.

Reference Books:

- 1. Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach", Elsevier, 2007.
- 2. Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks-Technology, Protocols and Applications", John Wiley, 2007.
- 3. Anna Hac, "Wireless Sensor Network Designs", John Wiley, 2003.