COMPUTER NETWORKS LAB | Course Code: 18ECL76 | CIE Marks : 40 | SEE Marks : 60 | |--|----------------|----------------| | Lecture Hours/Week: 02 Hours Tutorial (Instructions) + 02 Hours Laboratory | | | | RBT Level: L1, L2, L3 | Exam Hours: 03 | | | CREDITS-02 | | | ### **Course Learning Objectives:** This course will enable students to: - Choose suitable tools to model a network and understand the protocols at various OSI reference levels. - Design a suitable network and simulate using a Network simulator tool. - Simulate the networking concepts and protocols using C/C++ programming. - Model the networks for different configurations and analyze the results. ## **Laboratory Experiments** # PART-A: Simulation experiments using NS2/NS3/OPNET/NCTUNS/NetSim/QualNet or any other equivalent tool - 1. Implement a point to point network with four nodes and duplex links between them. Analyze the network performance by setting the queue size and varying the bandwidth. - 2. Implement a four node point to point network with links n0-n2, n1-n2 and n2-n3. Apply TCP agent between n0-n3 and UDP between n1-n3. Apply relevant applications over TCP and UDP agents changing the parameter and determine the number of packets sent by TCP/UDP. - 3. Implement Ethernet LAN using n (6-10) nodes. Compare the throughput by changing the error rate and data rate. - 4. Implement Ethernet LAN using n nodes and assign multiple traffic to the nodes and obtain congestion window for different sources/destinations. - 5. Implement ESS with transmission nodes in Wireless LAN and obtain the performance parameters. - 6. Implementation of Link state routing algorithm. # PART-B: Implement the following in C/C++ - 1. Write a program for a HLDC frame to perform the following. - i) Bit stuffing - ii) Character stuffing. - 2. Write a program for distance vector algorithm to find suitable path for transmission. - 3. Implement Dijkstra's algorithm to compute the shortest routing path. - 4. For the given data, use CRC-CCITT polynomial to obtain CRC code. Verify the program for the cases - a. Without error - b. With error - 5. Implementation of Stop and Wait Protocol and Sliding Window Protocol - 6. Write a program for congestion control using leaky bucket algorithm. **Course outcomes:** On the completion of this laboratory course, the students will be able to: - 1. Choose suitable tools to model a network. - 2. Use the network simulator for learning and practice of networking algorithms. - 3. Illustrate the operations of network protocols and algorithms using C programming. - 4. Simulate the network with different configurations to measure the performance parameters. - 5. Implement the data link and routing protocols using C programming. #### **Conduct of Practical Examination:** - All laboratory experiments are to be included for practical examination. - For examination one question from software and one question from hardware or only one hardware experiments based on the complexity to be set. - Students are allowed to pick one experiment from the lot. - Strictly follow the instructions as printed on the cover page of answer script for breakup of marks. - Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.