B. E. CIVIL ENGINEERING

Outcome Based Education (OBE) and Choice Based Credit System (CBCS) SEMESTER - IV

ADDITIONAL MATHEMATICS - II

(Mandatory Learning Course: Common to All Branches)

(A Bridge course for Lateral Entry students under Diploma quota to BE/B. Tech

programmes)

, , , , ,	programm	ies)	40
Course Code	18MATDIP41	CIE Marks	60
Teaching Hours/Week (L:T:P)	(2:1:0)	SEE Marks	03
Credits	00	Exam Hours	03
Cidate			1779 S20 5±1

Course Learning Objectives:

- To provide essential concepts of linear algebra, second & higher order differential equations along with methods to solve them.
- To provide an insight into elementary probability theory and numerical methods.

Linear Algebra: Introduction - rank of matrix by elementary row operations - Echelon form. Consistency of system of linear equations - Gauss elimination method. Eigen values and Eigen vectors of a square matrix. Problems.

Module-2

Finite differences. Interpolation/extrapolation using Newton's Numerical Methods: forward and backward difference formulae (Statements only)-problems. Solution and Regula-Falsi Newton-Raphson polynomial and transcendental equations _ methods (only formulae)- Illustrative examples. Numerical integration: Simpson's one

Module-3

Higher order ODE's: Linear differential equations of second and higher order equations with constant coefficients. Homogeneous /non-homogeneous equations. Inverse differential operators. [Particular Integral restricted to $R(x) = e^{ax}$, $\frac{\sin ax}{\cos ax}$, x^n for f(D)y = R(x).

Module-4

Partial Differential Equations (PDE's): Formation of PDE's by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with respect to one independent variable only.

Probability: Introduction. Sample space and events. Axioms of probability. Addition & multiplication theorems. Conditional probability, Bayes's theorem, problems.

Course Outcomes: At the end of the course the student will be able to:

- Solve systems of linear equations using matrix algebra.
- Apply the knowledge of numerical methods in modelling and solving of engineering problems.
- Apply the knowledge of numerical methods in modelling and solving of engineering problems.
- Classify partial differential equations and solve them by exact methods.
- Apply elementary probability theory and solve related problems.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.

S1. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textb	oook			
	Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers	43 rd Edition, 2015

1 Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons 10th Edition		
2		Rohit Khurana	And the second	2015
~			Cengage Learning	2015.

Dept. of Civil Engineering & Technology

No.D.

Dept. of Civil Engineering & Technology

Restitute of Engg. & Technology

Alva's Institute of Engg. 574 225

Mijar, Moodbidri