B.E.(Common to all Programmes)

Outcome Based Education (OBE) and Choice Based Credit System (CBCS) SEMESTER - IV

COMPLEX ANALYSIS, PROBABILITY AND STATISTICAL METHODS

(Common to all Programmes)

[As per Choice Based Credit System (CBCS) scheme]

Course Code	18MAT41	CIE Marks	40
Teaching Hours/Week (L:T:P)	(2:2:0)	SEE Marks	60
Credits	3	Exam Hours	03

Course Learning Objectives:

- To provide an insight into applications of complex variables, conformal mapping and special functions arising in potential theory, quantum mechanics, heat conduction and field theory.
- To develop probability distribution of discrete, continuous random variables and joint probability distribution occurring in digital signal processing, design engineering and microwave engineering.

Module-1

Calculus of complex functions: Review of function of a complex variable, limits, continuity, and differentiability. Analytic functions: Cauchy-Riemann equations in Cartesian and polar forms and consequences. Construction of analytic functions: Milne-Thomson method-Problems.

Module-2

Conformal transformations: Introduction. Discussion of transformations: $w=z^2$, $w=e^z$, $w=z+\frac{1}{z}$, $(z\neq 0)$

. Bilinear transformations- Problems.

Complex integration: Line integral of a complex function-Cauchy's theorem and Cauchy's integral formula and problems.

Module-3

Probability Distributions: Review of basic probability theory. Random variables (discrete and continuous), probability mass/density functions. Binomial, Poisson, exponential and normal distributions- problems (No derivation for mean and standard deviation)-Illustrative examples.

Module-4

Curve Fitting: Curve fitting by the method of least squares-fitting the curves of the form-

$$y = ax + b$$
, $y = ax^b & y = ax^2 + bx + c$.

Statistical Methods: Correlation and regression-Karl Pearson's coefficient of correlation and rank correlation-problems. Regression analysis- lines of regression –problems.

Module-5

Joint probability distribution: Joint Probability distribution for two discrete random variables, expectation and covariance.

Sampling Theory: Introduction to sampling distributions, standard error, Type-I and Type-II errors. Test of hypothesis for means, student's t-distribution, Chi-square distribution as a test of goodness of fit.

Course outcomes: At the end of the course the student will be able to:

- CO1: Use the concepts of analytic function and complex potentials to solve the problems arising in electromagnetic field theory.
- CO2: Utilize conformal transformation and complex integral arising in aerofoil theory, fluid flow visualization and image processing.
- CO3: Apply discrete and continuous probability distributions in analyzing the probability models arising in engineering field.
- CO4: Make use of the correlation and regression analysis to fit a suitable mathematical model for the statistical data.
- CO5: Construct joint probability distributions and demonstrate the validity of testing the hypothesis.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textbooks						
1	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Edition,2016		
2	Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers	44 th Edition, 2017		
3	Engineering Mathematics	Srimanta Pal et al	Oxford University Press	3 rd Edition,2016		
Reference Books						
1	Advanced Engineering Mathematics	C. Ray Wylie, Louis C. Barrett	McGraw-Hill	6 th Edition 1995		
2	Introductory Methods of Numerical Analysis	S. S. Sastry	Prentice Hall of India	4th Edition 2010		
3	Higher Engineering Mathematics	B.V. Ramana	McGraw-Hill	11th Edition,2010		
4	A Textbook of Engineering Mathematics	N. P. Bali and Manish Goyal	Laxmi Publications	6 th Edition, 2014		
5	Advanced Engineering Mathematics	Chandrika Prasad and Reena Garg	Khanna Publishing,	2018		

Web links and Video Lectures:

- 1. http://nptel.ac.in/courses.php?disciplineID=111
- 2. http://www.class-central.com/subject/math(MOOCs)
- 3. http://academicearth.org/
- 4. VTU EDUSAT PROGRAMME 20

Dept. of Civil Engineering
Dept. of Civil Engineering
Bept. of Civil Engineering
8 Technology
9 Technology
9