B. E. CIVIL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VII

REINFORCED EARTH STRUCTURES			
Course Code	18CV743	CIE Marks	40
Teaching Hours/Week(L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives: This course will enable students to;

- 1. Create an understanding of the latest technique such as reinforcing the soil;
- 2. Analyze the concept of RE so as to ascertain stability of RE structures;
- 3. Understand the different reinforcing materials that can be used efficiently in soils.
- 4. Understand design concepts of different RE structures including introductory concepts of Foundations resting of RE soil bed.

Module -1

Basics of Reinforced Earth Construction: Definition, Historical Background, Components, Mechanism and Concept, Advantages and Disadvantage of reinforced earth Construction, Sandwich technique for clayey soil. Geosynthetics and Their Functions: Historical developments, Recent developments, manufacturing process woven &non-woven, Raw materials —Classification based on materials type — Metallic and Non-metallic, Natural and Man-made, Geosynthetics.

Properties and Tests on Materials Properties – Physical, Chemical, Mechanical, Hydraulic, Endurance and Degradation requirements, Testing & Evaluation of properties.

Module -2

Design of Reinforced Earth Retaining Walls: Concept of Reinforced earth retaining wall, Internal and external stability, Selection of materials, Typical design problems

Soil Nailing Techniques: Concept, Advantages & limitations of soil nailing techniques, comparison of soil nailing with reinforced soil, methods of soil nailing, Construction sequence, Components of system, Design aspects and precautions to be taken.

Module -3

Design of Reinforced Earth Foundations: Modes of failure of foundation, Determination of force induced in reinforcement ties – Location of failure surface, tension failure and pull out resistance, length of tie and its curtailment, Bearing capacity improvement in soft soils, General guidelines.

Module -4

Geosynthetics for Roads and Slopes: Roads - Applications to Temporary and Permanent roads, Role of Geosynthetic in enhancing properties of road, control of mud pumping, Enhancing properties of subgrade, Design requirements Slopes - Causes for slope failure, Improvement of slope stability with Geosynthetic, Drainage requirements, Construction technique. Simple Numerical Stability Checking Problems on Reinforced Slopes.

Module -5

Geosynthetics - filter, drain and landfills: Filter & Drain - Conventional granular filter design criteria, Geosynthetic filter design requirements, Drain and filter properties, Design criteria - soil retention, Geosynthetic permeability, anti clogging, survivability and durability (No Numerical Problems)

Landfills – Typical design of Landfills – Landfill liner & cover, EPA Guidelines, Barrier walls for existing landfills and abandoned dumps (No Numerical Problems).

Course outcomes: After studying this course, students will be able to:

- 1. identify, formulate reinforced earth techniques that are suitable for different soils and in different structures;
- 2. understand the laboratory testing concepts of Geo synthetics
- 3. design RE retaining structures and Soil Nailing concepts
- 4. Determine the load carrying capacity of Foundations resting on RE soil bed.
- 5. asses the use of Geo synthetics in drainage requirements and landfill designs

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.

- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Textbooks:

- 1. Koerner. R.M, "Design with Geo synthetics", Prince Hall Publications
- 2. Koerner. R.M. &Wesh, J.P, "Construction and Geotechnical Engineering using synthetic fabrics", Wiley
- 3. Sivakumar Babu G. L., "An introduction to Soil Reinforcement and Geo synthetics", Universities Press,
- 4. Swami Saran, "Reinforced Soil and its Engineering Applications", I. K. International Pvt. Ltd, New Delhi
- 5. Venkattappa Rao, G., & Suryanarayana Raju., G. V.S, "Engineering with Geo synthetics", Tata McGraw **Reference Books:**

- 1. Jones, "Earth reinforcement and Soil structure", CJEP Butterworths, London
- 2. Ingold, T.S. & Millar, K.S, "Geotextile Hand Book", Thomas, Telford, London.
- 3. Hidetoshi Octial, Shigenori Hayshi& Jen Otani, "Earth Reinforcement Practices", Vol. I, A.A. Balkema,
- 4. Bell F.G, "Ground Engineer's reference Book", Butter worths, London
- 5. Ingold, T.S, "Reinforced Earth", Thomas, Telford, London.
- 6. Sarsby R W- Editor, "Geo synthetics in Civil Engineering", Wood head Publishing Ltd & CRC Press, 2007

Plas instinte of Engg. Ear was most Dept. of Civil Engineering Mijar, Moodbidii - 574 225