B. E. CIVIL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VII | REINFORCED EARTH STRUCTURES | | | | |-----------------------------|---------|------------|----| | Course Code | 18CV743 | CIE Marks | 40 | | Teaching Hours/Week(L:T:P) | (3:0:0) | SEE Marks | 60 | | Credits | 03 | Exam Hours | 03 | # Course Learning Objectives: This course will enable students to; - 1. Create an understanding of the latest technique such as reinforcing the soil; - 2. Analyze the concept of RE so as to ascertain stability of RE structures; - 3. Understand the different reinforcing materials that can be used efficiently in soils. - 4. Understand design concepts of different RE structures including introductory concepts of Foundations resting of RE soil bed. #### Module -1 Basics of Reinforced Earth Construction: Definition, Historical Background, Components, Mechanism and Concept, Advantages and Disadvantage of reinforced earth Construction, Sandwich technique for clayey soil. Geosynthetics and Their Functions: Historical developments, Recent developments, manufacturing process woven &non-woven, Raw materials —Classification based on materials type — Metallic and Non-metallic, Natural and Man-made, Geosynthetics. **Properties and Tests on Materials** Properties – Physical, Chemical, Mechanical, Hydraulic, Endurance and Degradation requirements, Testing & Evaluation of properties. #### Module -2 **Design of Reinforced Earth Retaining Walls:** Concept of Reinforced earth retaining wall, Internal and external stability, Selection of materials, Typical design problems Soil Nailing Techniques: Concept, Advantages & limitations of soil nailing techniques, comparison of soil nailing with reinforced soil, methods of soil nailing, Construction sequence, Components of system, Design aspects and precautions to be taken. #### Module -3 **Design of Reinforced Earth Foundations:** Modes of failure of foundation, Determination of force induced in reinforcement ties – Location of failure surface, tension failure and pull out resistance, length of tie and its curtailment, Bearing capacity improvement in soft soils, General guidelines. #### Module -4 Geosynthetics for Roads and Slopes: Roads - Applications to Temporary and Permanent roads, Role of Geosynthetic in enhancing properties of road, control of mud pumping, Enhancing properties of subgrade, Design requirements Slopes - Causes for slope failure, Improvement of slope stability with Geosynthetic, Drainage requirements, Construction technique. Simple Numerical Stability Checking Problems on Reinforced Slopes. ### Module -5 Geosynthetics - filter, drain and landfills: Filter & Drain - Conventional granular filter design criteria, Geosynthetic filter design requirements, Drain and filter properties, Design criteria - soil retention, Geosynthetic permeability, anti clogging, survivability and durability (No Numerical Problems) Landfills – Typical design of Landfills – Landfill liner & cover, EPA Guidelines, Barrier walls for existing landfills and abandoned dumps (No Numerical Problems). # Course outcomes: After studying this course, students will be able to: - 1. identify, formulate reinforced earth techniques that are suitable for different soils and in different structures; - 2. understand the laboratory testing concepts of Geo synthetics - 3. design RE retaining structures and Soil Nailing concepts - 4. Determine the load carrying capacity of Foundations resting on RE soil bed. - 5. asses the use of Geo synthetics in drainage requirements and landfill designs # Question paper pattern: - The question paper will have ten full questions carrying equal marks. - Each full question will be for 20 marks. - There will be two full questions (with a maximum of four sub- questions) from each module. - Each full question will have sub-question covering all the topics under a module. - The students will have to answer five full questions, selecting one full question from each module. # Textbooks: - 1. Koerner. R.M, "Design with Geo synthetics", Prince Hall Publications - 2. Koerner. R.M. &Wesh, J.P, "Construction and Geotechnical Engineering using synthetic fabrics", Wiley - 3. Sivakumar Babu G. L., "An introduction to Soil Reinforcement and Geo synthetics", Universities Press, - 4. Swami Saran, "Reinforced Soil and its Engineering Applications", I. K. International Pvt. Ltd, New Delhi - 5. Venkattappa Rao, G., & Suryanarayana Raju., G. V.S, "Engineering with Geo synthetics", Tata McGraw **Reference Books:** - 1. Jones, "Earth reinforcement and Soil structure", CJEP Butterworths, London - 2. Ingold, T.S. & Millar, K.S, "Geotextile Hand Book", Thomas, Telford, London. - 3. Hidetoshi Octial, Shigenori Hayshi& Jen Otani, "Earth Reinforcement Practices", Vol. I, A.A. Balkema, - 4. Bell F.G, "Ground Engineer's reference Book", Butter worths, London - 5. Ingold, T.S, "Reinforced Earth", Thomas, Telford, London. - 6. Sarsby R W- Editor, "Geo synthetics in Civil Engineering", Wood head Publishing Ltd & CRC Press, 2007 Plas instinte of Engg. Ear was most Dept. of Civil Engineering Mijar, Moodbidii - 574 225