IV Semester

DESIGN AND ANALYSIS OF ALGORITHMS

Course Code 21Cs42 CIE Marks 50
TeachingHours/Week (L:T:P: S) 3:0:2:0 SEE Marks 50
Total Hours of Pedagogy 40T+20P Total Marks 100
Credits 04 Exam Hours 03

Course Learning Objectives:

CLO 1. Explain the methods of analysing the algorithms and to analyze performance of algorithms.
CLO 2. State algorithm’s efficiencies using asymptotic notations.

CLO 3. Solve problems using algorithm design methods such as the brute force method, greedy method,
divide and conquer, decrease and conquer, transform and conguer, dynamic programming,
backtracking and branch and bound.

CLO 4. Choose the appropriate data structure and algorithm design method for a specified application.

CLOS. Introduce P and NP classes.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course
outcomes.

1. Lecturer method (L) does not mean only traditional lecture method, but different type of
teaching methods may be adopted to develop the outcomes.

2. Show Video/animation films to explain functioning of various concepts.

Encourage collaborative (Group Learning) Learning in the class.

4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical
thinking.

S. Adopt Problem Based Learning (PBL), which fosters students’ Analytical skills, develop
thinking skills such as the ability to evaluate, generalize, and analyze information rather than
simply recall iL

6. Topics will be introduced in a multiple representation.

7. Show the different ways to solve the same problem and encourage the students to come up
with their own creative ways to solve them.

8. Discuss how every concept can be applied to the real world - and when that's possible, it helps
improve the students' understanding.

w

Module-1

Introduction: What is an Algorithm? It’s Properties. Algorithm Specification-using natural language,
using Pseudo code convention, Fundamentals of Algorithmic Problem solving, Analysis Framework-
Time efficiency and space efficiency, Worst-case, Best-case and Average case efficiency.

Performance Analysis: Estimating Space complexity and Time complexity of algorithms.

Asymptotic Notations: Big-Oh notation (0), Omega notation (f2), Theta notation (@) with examples,
Basic efficiency classes, Mathematical analysis of Non-Recursive and Recursive Algorithms with

Examples.

Brute force design technique: Selection sort, sequential search, string matching algorithm with
complexity Analysis.

Textbook 1: Chapter 1 (Sections 1.1,1.2), Chapter 2(Sections 2.1,2.2,2.3,2.4), Chapter 3(Section
3.1,3.2)

Textbook 2: Chapter 1(section 1.1,1.2,1.3)

]

Laboratory Component:

1. Sortagiven set of n integer elements using Selection Sort method and compute its time
complexity. Run the program for varied values of n> 5000 and record the time taken to sort
Plot a graph of the time taken versus n. The elements can be read from a file or can be
generated using the random number generator. Demonstrate using C++/Java how the brute

force method works along with its time complexity analysis: worst case, average case and best
case.

Teaching-Learning Process 1. Problem based Learning.

2. Chalk & board, Active Learning,
3. Laboratory Demonstration.
Module-2

Divide and Conquer: General method, Recurrence equation for divide and conquer, solving it using

Master’s theorem. , Divide and Conquer algorithms and complexity Analysis of Finding the maximum &
minimum, Binary search, Merge sort, Quick sort.

Decrease and Conquer Approach: Introduction, Insertion sort, Graph searching algorithms,
Topological Sorting. It’s efficiency analysis.

Textbook 2: Chapter 3(Sections 3.1,3.3,3.4,3.5,3.6)

Textbook 1: Chapter 4 (Sections 4.1,4.2,4.3), Chapter 5(Section 5.1,5.2,5.3)

Laboratory Component:

1. Sortagivensetofn integer elements using Quick Sort method and compute its time

complexity. Run the program for varied values of n> 5000 and record the time taken to sort Plot
a graph of the time taken versus n. The elements can be read from a file or can be generated
using the random number generator. Demonstrate using C++/Java how the divide-and-conquer
method works along with its time complexity analysis: worst case, average case and best case.

2. Sortagivensetofn integer elements using Merge Sort method and compute jts time
complexity. Run the program for varied values of n> 5000, and record the time taken to sort.
Plota graph of the time taken versus n. The elements can be read from a file or can be generated
using the random number generator. Demonstrate using C++/Java how the divide-and-

conquer
method works along with its time complexity analysis: worst case, average case and best case.
Teaching-Learning Process 1. Chalk & board, Active Learning, MOOC, Problem based

Learning.
2. Laboratory Demonstration.

Module-3

Greedy Method: General method, Coin Change Problem,

Knapsack Problem, solving Job sequencing
with deadlines Problems.

Minimum cost spanning trees: Prim’s Algorithm, Kruskal’s Algorithm with performance analysis.
Single source shortest paths: Dijkstra's Algorithm.
Optimal Tree problem: Huffman Trees and Codes.

Transform and Conquer Approach: Introduction, Heaps and Heap Sort.
Textbook 2: Chapter 4(Sections 4.1,4.3,4.5)

Textbook 1: Chapter 9(Section 9.1,9.2,9.3,9.4), Chapter 6(section 6.4)

Laboratory Component:
Write & Execute C++/Java Program

1. Tosclve Knapsack problem using Greedy method.
To find shortest paths to other vertices from a given vertex in a weighted connected graph, using
Dijkstra's algorithm.

3. To find Minimum Cost Spanning Tree of a given connected undirected graph using Kruskal's
algorithm. Use Union-Find algorithms in your program.

4. To find Minimum Cost Spanning Tree of a given connected undirected graph using Prim's

algorithm.
Teaching-Learning Process 1. Chalk & board, Active Learning, MOOC, Problem based
Learning,
2. Laboratory Demonstration.
Module-4

Dynamic Programming: General method with Examples, Multistage Graphs.
Transitive Closure: Warshall's Algorithm. All Pairs Shortest Paths: Floyd's Algorithm,
Knapsack problem, Bellman-Ford Algorithm, Travelling Sales Person problem.

Space-Time Tradeoffs: Introduction, Sorting by Counting, Input Enhancement in String Matching-
Harspool'’s algorithm.

Textbook 2: Chapler 5 (Sections 5.1,5.2,5.4,5.9)
Textbook 1: Chapter 8(Sections 8.2,8.4), Chapter 7 (Sections 7.1,7.2)

Laboratory Component:
Write C++/ Java programs to

1. Solve All-Pairs Shortest Paths problem using Floyd's algorithm.
2. Solve Travelling Sales Person problem using Dynamic programming.
3. Solve 0/1 Knapsack problem using Dynamic Programming method.

Teaching-Learning Process 1. Chalk & board, Active Learning, MOOC, Problem based
Learning.
2. Laboratory Demonstration.

Module-5

Backtracking: General method, solution using back tracking to N-Queens problem, Sum of subsets
problem, Graph coloring, Hamiltonian cycles Problems.

Branch and Bound: Assignment Problem, Travelling Sales Person problem, 0/1 Knapsack problem

NP-Complete and NP-Hard problems: Basic concepts, non- deterministic algorithms, P, NP, NP-
Complete, and NP-Hard classes.

Textbook 1: Chapter 12 (Sections 12.1,12.2) Chapter 11(11.3)
Textbook 2: Chapter 7 (Sections 7.1,7.2,7.3,7.4,7.5) Chapter 11 (Section 11.1)

Laboratory Component:

1. Design and implement C++/Java Program to find a subset of a given set § = {Sl, 52,.., Sn} of n
positive integers whose SUM is equal to a given positive integer d. For example, if $={1,2, 5, 6,
8) and d= 9, there are two solutions {1, 2, 6} and {1, 8). Display a suitable message, if the given
problem instance doesn't have a solution.

2. Design and implement C++/Java Program to find all Hamiltonian Cycles in a connected
undirected Graph G of n vertices using backtracking principle.

Teaching-Learning Process 1. Chalk & board, Active Learning, MOOC, Problem based
learning.
2. Laboratory Demonstration.

Course outcome (Course Skill Set)
At the end of the course the student will be able to:

CO1. Analyze the performance of the algorithms, state the efficiency using asymptotic notations and
analyze mathematically the complexity of the algorithm.

CO 2. Apply divide and conquer approaches and decrease and conquer approaches in solving the
problems analyze the same

CO3. Apply theappropriate algorithmic design technique like greedy method, transform and conquer
approaches and compare the efficiency of algorithms to solve the given problem.

CO4. Apply and analyze dynamic programming approaches to solve some problems. and improve an
algorithm time efficiency by sacrificing space.

CO5. Apply and analyze backtracking, branch and bound methods and to describe P, NP and NP-
Complete problems.

Assessment Detalls (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%.
The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be
deemed to have satisfied the academlic requirements and earned the credits allotied to each subject/
course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination
(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal
Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation:
Three Unit Tests each of 20 Marks (duration 01 hour)

1. First test at the end of 5% week of the semester
2. Second test at the end of the 10% week of the semester
3. Third test at the end of the 15" week of the semester

Two assignments each of 10 Marks

4. First assignment at the end of 4 week of the semester
5. Second assignmentat the end of 92 week of the semester

Practical Sessions need to be assessed by appropriate rubrics and viva-voce method. This will contribute
to 20 marks.

o Rubrics for each Experiment taken average for all Lab components - 15 Mar
[e

nent. Of Computer Science & Engineoring

's Institute of Engg. & Technology
il s{'ﬂi]ar, MOODBIDRI -574 225

