
OPERATING SYSTEMS				
Course Code:	21CS44	CIE Marks	50	
Teaching Hours/Week (L:T:P:S)	2:2:0:0	SEE Marks	50	
Total Hours of Pedagogy	40	Total Marks	100	
Credits	03	Exam Hours	03	

Course Objectives:

- CLO 1. Demonstrate the need for OS and different types of OS
- CLO 2. Apply suitable techniques for management of different resources
- CLO 3. Use processor, memory, storage and file system commands
- CLO 4. Realize the different concepts of OS in platform of usage through case studies

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer methods (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design timining skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. IntroduceTopics in manifold representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.

Introduction to operating systems, System structures: What operating systems do; Computer System organization; Computer System architecture; Operating System structure; Operating System operations; Process management; Memory management; Storage management; Protection and Security; Distributed system; Special-purpose systems; Computing environments.

Operating System Services: User - Operating System interface; System calls; Types of system calls; System programs; Operating system design and implementation; Operating System structure; Virtual

Process Management: Process concept; Process scheduling; Operations on processes; Inter process communication

Textbook 1: Chapter - 1,2,3

Teaching-Learning Process	Active learning and problem solving	
	1. https://www.youtube.com/watch?v=vBURTt97EkA&list=PLBlnK6f	
	EyqRiVhbXDGLXDk OQAeuVcp2O	
	2. https://www.youtube.com/watch?v=a2B69vCtjOU&list=PL3-	
	wYxbt4yCjpcfUDz-TgD_ainZ2K3MUZ&index=2	
Module-2		

Modu

Multi-threaded Programming: Overview; Multithreading models; Thread Libraries; Threading issues. Process Scheduling: Basic concepts; Scheduling Criteria; Scheduling Algorithms; Multiple-processor

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module Marks scored shall be proportionally reduced to 50 marks

Suggested Learning Resources:

Textbooks

- 1. Andrew N Sloss, Dominic Symes and Chris Wright, ARM system developers guide, Elsevier, Morgan Kaufman publishers, 2008.
- 2. Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education, Private Limited, 2nd Edition.

Reference Books

- 1. Raghunandan. G.H, Microcontroller (ARM) and Embedded System, Cengage learning Publication, 2019
- 2. The Insider's Guide to the ARM7 Based Microcontrollers, Hitex Ltd.,1st edition, 2005.
- 3. Steve Furber, ARM System-on-Chip Architecture, Second Edition, Pearson, 2015.
- 4. Raj Kamal, Embedded System, Tata McGraw-Hill Publishers, 2nd Edition, 2008.

Weblinks and Video Lectures (e-Resources):

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

Heat of the Department
Dept. of Artificial Intelligence & Machine Learning
Alva's Institute of Engineering and Technology
Shobhavana Campus, Mijar
Moodubidire 574 225, D.K. Karnataka, India